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ABSTRACT


The uncertainties associated with climate-change pro-
jections for California are unlikely to disappear any


time soon, and yet important long-term decisions will

be needed to accommodate those potential changes.


Projection uncertainties have typically been addressed

by analysis of a few scenarios, chosen based on avail-
ability or to capture the extreme cases among avail-

able projections. However, by focusing on more com-
mon projections rather than the most extreme projec-

tions (using a new resampling method), new insights

into current projections emerge: (1) uncertainties asso-
ciated with future greenhouse-gas emissions are com-

parable with the differences among climate models, so

that neither source of uncertainties should be neglect-

ed or underrepresented; (2) twenty-first century tem-
perature projections spread more, overall, than do pre-
cipitation scenarios; (3) projections of extremely wet


futures for California are true outliers among current

projections; and (4) current projections that are


warmest tend, overall, to yield a moderately drier


California, while the cooler projections yield a some-

what wetter future. The resampling approach applied


in this paper also provides a natural opportunity to


objectively incorporate measures of model skill and


the likelihoods of various emission scenarios into


future assessments.
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INTRODUCTION


Projections of climate change due to increasing green-
house-gas concentrations in the 21st Century are

inevitably uncertain because of the chaotic nature of the

global climate system, because of model imperfections,

and because of uncertainties regarding what path

mankind’s emissions of greenhouse gases and other

atmospheric contaminants will follow in the future. In

the midst of our uncertainties, however, current (climate

model) projections exhibit some key commonalities that

demand near-term attention from California’s resource-
management communities: (1) even the most benign of

the projected climate-change scenarios are sufficient to

significantly alter the California’s landscape, hydrology,

and land and water resources, and (2) those alterations

are likely to become significant within roughly the next

25 years (Barnett et al. 2004; Dettinger et al. 2004; van

Rheenen et al. 2004). Thus, California—like the rest of

society—is faced with a variety of possible climate

changes that are likely to develop within the same time

frames as the resource-management decisions necessary

to respond to them.


To date, technical responses to this dilemma primarily

have involved development and preliminary applica-
tions of tools for assessing the potential climate-change

impacts and the efficacy of various possible adaptation

or accommodation strategies. In part, this response has

been motivated by the assumption that projection

uncertainties will be reduced sufficiently in the near

term to justify postponing more intensive and detailed

assessments until later. However, the projected changes

include sufficiently important near-term impacts, and

the chances that projection uncertainties will decline

precipitously in the near term are small enough, so that

delays may not be warranted. For example, two highly

respected climate modelers, David Randall and Akio

Arakawa, recently opined that “a sober assessment sug-
gests that with current approaches the cloud parameter-
ization problem [the most vexing aspect of climate and

climate-change modeling at present] will not be

‘solved’ in any of our lifetimes” (Randall et al. 2003).

Thus, we should not assume that large reductions of

projection uncertainty will arrive in time to allow con-
fident planning of responses to climate change.

Consequently, new strategies for more completely

accommodating projection uncertainties are needed.


The development of the required uncertainty-based

strategies will be challenging, but will offer the

opportunity to focus more on the likelihoods, rather

than just the uncertainties, of climate change. That is,

as Myles Allen of Oxford University (2003) has

recently commented, “Climate modelers need to start

saying what changes can be ruled out as unlikely,

rather than simply ruled in as possible.” Indeed, it is

perhaps time for California analysts to focus on what

is more likely rather than on what is just possible. If

this distinction can be determined, accommodation

strategies and impact assessments will become more

focused and practical.


Our view of California’s future climate is clouded by

uncertainties due to model imperfections and uncer-
tainties about how rapidly greenhouse gases will

accumulate in the atmosphere, together with the natu-
rally unpredictable variations of the climate system.

Preliminary depictions of how these uncertainties

cloud projections of California’s future climate are

possible, as demonstrated here using a multiple-
model, multiple-emissions collection of currently

available climate-change projections. This paper illus-
trates new insights provided by characterization of the

overall distributions of available climate-change pro-
jections, insights that were not forthcoming when our

focus was solely on a few extreme projections. Initial

insights include recognition that warming by about

+5ºC is the most common projection for 21st Century

California, with relatively little attendant precipitation

change. The sign of projected precipitation changes

appears to depend on whether one considers one of

the warmer or cooler projections, which generally

yield modestly drier or modestly wetter outcomes,

respectively. However, in order to place even these

simple insights into their proper contexts, the entire

collection of projections must be presented and sum-
marized in terms of objectively derived projection dis-
tributions.


PROBLEM


The most common approach for analyzing climate-
prediction uncertainties is analysis of ensembles (col-
lections) of predictions, wherein each prediction dif-
fers from the others due to some prescribed model
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condition. Ensembles of climate projections often are

used to describe prediction uncertainties associated

with model constructions, initial conditions, and future

emissions of greenhouse gases into the global atmos-
phere. In weather- and climate-prediction applications,

several studies have argued that ensemble means are

better predictors than are any individual members of

the contributing ensembles (e.g., Krishnamurti et al.

2000; Richardson 2001; Zhu et al. 2002), and this find-
ing may eventually be found to extend also to cli-
mate-change projections. Thus, climate-change ensem-
ble means (or approximations thereof) might reason-
ably be analyzed, although we have heard of few uses

of even this strategy.


Instead, the more common strategy, to date, has been

to analyze one or two example scenarios (often deter-
mined more by logistics and availability than by their

representativeness). More determined efforts are

responding to today’s limited ensembles of available

projections, and to the burdens imposed on some

impact studies by each additional ensemble member,

by trying to “bookend” the climate-change possibilities

by analyzing only the upper and lower bounds of the

available projections (e.g., Electrical Power Research

Institute 2003; Lund et al. 2003; Miller et al. 2003, as

well as the ongoing coordinated efforts by the Joint

Department of Water Resources/U.S. Bureau of

Reclamation Climate Change Work Team in California).

Such approaches ultimately do little to quantify the

uncertainties facing decision makers.


Neither the ensemble means, nor the most extreme

projections (often outliers), describe the real scatter

and uncertainties among current projections.

Ensembles of climate-change projections also presum-
ably contain information about the likelihoods of vari-
ous scenarios and about higher-order statistics of the

projection scatter. Ideally, interpretations and applica-
tions of climate-change projections in decision making

will be informed by the most complete descriptions of

the ensembles possible.


PROVIDING PROJECTION DISTRIBUTION

FUNCTIONS (PDFs)


The typical climate-change ensemble, whether number-
ing tens of members or a very few, offers the analyst


and decision-maker a collection of erratic, often inter-
twining time series (called “spaghetti” in this paper) of

simulated futures, e.g., as in Figure 1. This representa-
tion of an ensemble is useful and simple, giving a qual-
itative sense of scatter, commonalities, and trends.

Done correctly, the spaghetti provides a sense of how

the trends contrast with shorter term fluctuations in the

simulations. However, our eyes are naturally drawn to

outliers out of proportion to their significance, and

clusters in the morass of curves may receive less con-
sideration than is their due. A more even-handed and

quantitative view of the spaghetti of a typical ensemble

requires estimation of the probability distribution from

which the ensemble was sampled.


Figure 1. Ensembles of historical and future temperature and pre-
cipitation projections from six coupled ocean-atmosphere gener-
al-circulation models, each forced by historical scenarios, and

then—in the 21st Century—the A2, B2, and IS92a SRES emissions

scenarios (Figure 2, Cubasch and Meehl 2001 ). The dashed back-
ground of curves shows annual deviations from the 1951–1980

simulated means; whereas, heavy curves show 7-year moving

averages. Projections are for a single model grid cell (ranging

from 2.5°C to 5.5°C spatial resolution, depending on model) from

each model, centered over northern California.
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To be precise about our goals, though, note that we are

limited to estimating the probability of obtaining a

given simulation of climate change, based on the les-
sons from the ensemble. Since we are working with

imperfect models and forcings, the distribution from

which our ensembles are sampled is not the same as

the distribution of future real-world climates. The

ensemble scatter can only reflect differences between

models, specified emission scenarios, and simulated

versions of climate variability. If all the models (or

emission scenarios) are wrong for some reason, then

the probability of obtaining a given simulation could

be quite different from the probability of having a par-
ticular climatic condition at some specified future time.

Thus, we are only able to estimate the distribution of

projections of future climates and cannot directly esti-
mate the actual probabilities of various future climates.

We can only estimate (what we will refer to as) projec-
tion distribution functions (PDFs) as the best available

approximations of the true climate-change probability

distribution functions.


If the ensemble includes many members, then charac-
terizing the ensemble trends and scatter can be as sim-
ple as ranking the projections for each time and bin-
ning the results to directly form histograms or crude

model-scenario PDFs. Even when the PDFs so estimat-
ed are crude, they can provide useful measures for

comparing projections to observations and can provide

a useful basis for comparing different ensembles (e.g.,

in the weather-prediction sense) (Toth et al. 2003).


When the number of ensemble members is smaller,

however, developing even a rough estimate of the

PDFs involves assumptions about the character of the

projection uncertainties sampled by the ensemble. One

approach is to sort and rank the projections, use them

as mileposts of the PDF (e.g., the median projection

value at a given lead time marks the median in the

PDF), and then smooth algebraically to fill in interpo-
lated values. Alternatively, one can attribute error bars

of some weight and shape to each ensemble member

and then essentially sum the error bars from all the

ensemble members to arrive at the overall ensemble

PDF (but then important assumptions need to be made

regarding the growth rate of the error bars for the

individual ensemble members). Both of these

approaches have the advantage that they are simple,


but have the disadvantage that they require subjective

choices or assumptions by the analyst.


In this paper, a third alternative is applied that, in its

simplest form, has no subjectively tunable parameters.

However, because the particular method used to esti-
mate the PDFs is probably less important than the

effect of viewing PDFs (rather than spaghetti), details

of this particular alternative are left to an Appendix.

The method requires no tunable parameters, because it

characterizes the ensemble spread by a data-adaptive

decomposition of the projections into (statistically)

independent parts and then resamples those independ-
ent components as often as necessary to provide a

smooth PDF. The resampling method provides an

almost unlimited number of new realizations that

retain the essential statistical characteristics of the

ensemble members, including time variations of aver-
age and standard deviation of the ensemble and all the

lag and intervariable correlations. The method readily

handles ensembles that bifurcate along two or more

trajectories and handles the contributions from outly-
ing ensemble members as a matter of course.


CLIMATE-CHANGE DISTRIBUTIONS

FOR NORTHERN CALIFORNIA


Experimental design


As an illustration of the difference between describing

climate-change ensembles as PDFs and as spaghetti, the

resampling procedure described in the Appendix is

applied here to an ensemble of climate-change projec-
tions of 21st Century (2001–2099) climate. The ensemble

considered here was compiled from six climate models,

each simulating responses to each of three specified

greenhouse-gas-plus-sulfate-aerosols emissions scenar-
ios (Figure 1; see http://ipcc-ddc.cru.uea.ac.uk for access

to underlying simulations). The ensemble includes three

projections each by the U.S. PCM, Canadian CCCM,

German ECHAM4, British HadCM3, Japanese NIES, and

Australian CSIRO coupled ocean-atmosphere global cli-
mate models; the emissions scenarios are the A2, B2,

and IS92a greenhouse-gas-plus-sulfate-aerosol emis-
sions scenarios (Figure 2, Cubasch and Meehl 2001),

which represent projections of relatively rapid, moder-
ate, and intermediate rates of 21st Century greenhouse-
gas emission increases, respectively (see also Hayhoe et
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al. 2004, for discussion of emission scenarios and their

consequences for California).


By considering this even balancing of models and sce-
narios, no model or scenario is emphasized over the oth-
ers. This even-handed treatment of the models and sce-
narios was valued here sufficiently so that some other

models and emissions scenarios were not included in the

present analysis either because all three emissions sce-
narios were not available from a given model (e.g., the

British HadCM2 model) or because all six models had

not yet run a given emissions scenarios (e.g., A1fi and

B1; Figure 2). Ideally, in the absence of known deficien-
cies in one or another of the ensemble members, the cli-
mate-change PDFs should reflect, in an even-handed

way, the combination of uncertainties associated with

models and the uncertainties associated with future

emissions. However, not all models (or scenarios) are

equally skillful at reproducing or projecting climate vari-
ations. A simple extension of the resampling procedure

to allow an uneven treatment of the models (i.e., to

weight the most skillful models the most and the least

skillful models the least) is outlined at the end of this

section. Multiple simulations from a single model and

emissions combination can also be included and weight-
ed fairly by the resampling approach applied here.


The 18 ninety-nine-year-long (future) climate projec-
tions of Northern California climate change compiled

in Figure 1 all share rapid warming tendencies after

about 1970 and, by about 2020, temperatures have all

warmed beyond most of the background of historical


temperature variability. The general spread of tempera-
tures by 2100 is from +2.5°C to +9°C. Notably, the

scatter among scenarios is not substantially larger or

different than the scatter among models considered

here. Emission scenarios (e.g., the A1fi and B1 scenar-
ios) that diverge even more than the scenarios ana-
lyzed here might be different enough to spread the

projections considerably more. Projections of precipita-
tion in the 21st Century are less unanimous, with some

projections becoming much wetter (the wettest projec-
tions are both from the Canadian model) and some

drier. Plotted in this way, the eye naturally focuses on

the outliers in the ensemble, and many studies have

been constructed to address the bounds of such projec-
tion ensembles, rather than exploring the more com-
mon results.


To improve visualization, interpretation, and—for some

applications—the usefulness of this ensemble, the 18

projections of temperature and precipitation were

resampled according to the procedure described in the

Appendix. In this application of the resampling proce-
dure, mixing of the ensemble loading patterns was

restricted to only allow projections by a single model

to be intermixed. This restriction prevents possible

inappropriate mixing of incompatible components

from the projections by very different climate models.

The restriction is easily accomplished by beginning

each resampling cycle by choosing one of the models

at random, followed by random sampling among only

the several amplitude series for that model, to obtain

the new realization.


Results


The result of a 20,000-member resampling of the 18-
member climate-change projection ensemble is shown


in Figure 3. The principal components analysis (PCA)

applied in the first step of the procedure was “extend-
ed” (Weare and Nasstrom 1982) so that temperature

and precipitation changes were analyzed and resam-
pled together. The PDFs shown are thus aspects of the

joint PDFs of temperature and precipitation.

Consequently, for example, if a particular model has a

tendency for excursions of temperature and precipita-
tion to occur simultaneously, the resampled realiza-
tions will emulate those linkages.


Figure 2. Radiative forcings associated with historical emissions


of greenhouse gases and sulfate aerosols and with various pro-

jections of 21st Century emissions (modified from Figure 9-13a,


Cubasch and Meehl 2001 ).
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Early in the 21st Century, the projections are closely

clustered, somewhat warmer, and somewhat drier on

average than the 1951–1980 climatology (because,

even by 2000, greenhouse forcings are larger than dur-
ing that climatology period) (Dai et al. 2001). The

ensembles spread over the course of the 21st Century,

until by 2099, temperature-change projections range

(mostly) from about +2°C to +7°C, and precipitation-
change projections range from about –30 to +25

cm/yr, with two outlying exceptions. The probability

distributions shown are reflections of the joint varia-
tions of temperature and precipitation so that if, for

example, the projections that were warmest overall

tended also to be the wettest, and vice versa for cooler

and drier models, the resampled realizations would

maintain these tendencies faithfully. 

The smoothing that is provided by the resampling pro-

cedure is illustrated by the sequences of time slices


through the projection PDFs (in Figure 3) shown in


Figure 4. The temperature-change PDFs spread and


trend toward warmer conditions as the 21st Century


climate evolves. The increasing spread is mostly a


result of divergence between the models and divergence


of the emissions scenarios, with relatively little contri-

bution by increasing interannual variability within any


given model’s projections. Notice that, by as early as


2025, realizations that are cooler than normal by


1951–1980 standards are exceedingly rare. Seasonal


versions of the temperature-change PDFs (not shown)


indicate that summertime (June through August) tem-

perature-change projections scatter most in the ensem-

ble, followed by winter (December through February).


Figure 3. Distributions of original and component-resampled pro-
jections of annual 21st Century surface-air temperatures and

precipitation changes for a grid cell over Northern California

(40°N 120°W), from the ensemble of projections shown in

Figure 1 . Red circles show the raw ensemble projections; con-
tours and shading show resampled joint temperature-precipita-
tion probabilities, with a contour interval of 0.025.


Figure 4. Time slices of the distributions of resampled ensemble

realizations in Figure 3.
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The ensemble-mean summertime temperatures also

increase more than the other seasons.


In contrast, the precipitation-change PDFs move and

spread much less than do the temperature PDFs

(Figure 4). Overall, the resampled realizations (as in the

raw projections) most commonly exhibit only modest

21st Century precipitation changes over California. The

modes of the smoothed (resampled) PDFs in Figure 4

trend toward drier conditions, which is much more dif-
ficult to perceive in the scattered red dots of Figure 3

or in a corresponding “spaghetti” plot overlaying each

ensemble member’s projected time series. Thus,

although no new information is introduced by the

resampling procedure, its smoothing can nonetheless

be very informative. Seasonal versions of these PDFs

(not shown) indicate that the tendency towards drier

conditions derives mostly from spring (March to May)

precipitation declines, with smaller deficits also devel-
oping in winters (December to February).


The general rate of expansion of the ensemble spread

around this mean precipitation-change behavior is

small, except for a distinct heavy tail spread towards

substantially wetter conditions. That heavy tail spread

reflects the contributions to the ensemble from the

Canadian model’s projections, the two outlying much

wetter projections in the original 18-member ensemble.

That model, under each of the emissions scenarios,

evolves towards a much wetter California, as part of

its tendency (unique among the models compiled here)

to respond to increasing greenhouse forcing with

enhanced El Niño conditions. The resulting wetter con-
ditions reflect much wetter winters in that model’s

projections.


Discussion and extensions


The PDFs illustrate the probability that a random

model-emissions combination will yield a given tem-
perature and precipitation deviations, from long-term

averages over the 1900-1950 period, by the year

shown, in the presence of the simulated natural vari-
ability of California’s climate. That is, the PDFs reflect

uncertainties (surrounding a given year’s climate pro-
jection) due to the combination of natural variability,

model differences, and emission-scenario differences

available here. However, when only the


simulations under business-as-usual emissions are

resampled, the central tendencies of the PDFs are not

substantially different from those shown in Figure 4,

although the breadths are reduced. When a single

model’s (PCM’s) simulations of climatic responses to

the several emission scenarios are resampled, the

spread of the resulting PDFs (not shown) are not much

changed, but their central tendencies of temperature

change evolve less than in Figure 4. Thus, the PDFs in

Figure 4 robustly reflect characteristics of the climate

projections, almost regardless of the choice of simula-
tions included (from among the models and emission

scenarios considered here).


The resampling procedure applied here generates real-
izations of temperature and precipitation change that

are jointly distributed. Thus, it is also possible to eval-
uate tendencies for correlated temperature and precipi-
tation changes. The joint probabilities of precipitation

and temperature change among the 20,000 resampled

realizations are mapped in Figure 5 for several years

during the 21st Century. Notice that, as indicated pre-
viously, temperatures generally warm and precipitation

changes little overall. However, the joint probability

distribution is also somewhat bimodal in ways not

obvious from either the unvariate PDFs or the spaghet-
ti plots. The joint probabilities indicate that the

warmest climate-change projections tend to also bring

drier conditions; the cooler projections tend to be

slightly wetter, most obviously by 2050. By 2100,

when all the scenarios have warmed considerably, the

same tendency still persists, but the warmer-drier sce-
narios dominate overall.


The resampled realizations of the projections also pro-
vide a ready supply of examples of coordinated tem-
perature and precipitation changes for use in evaluat-
ing climate-change impacts. As a simple example, the

20,000 temperature-and-precipitation-change realiza-
tions generated for Figures 3 and 4 were introduced to

the streamflow amount and timing response surfaces

mapped by Jeton et al. (1996) for the North Fork

American River in the central Sierra Nevada. Those

response surfaces (Figs. 16b and 17c in Jeton et al.

1996) show the mean simulated changes in annual

streamflow amounts and in the median-flow dates

(days of year by which half the year’s flow is past), in

response to 100-year-long synthetic climate series with
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arbitrarily specified mean-climate changes ranging

from cooler to warmer, and from drier to wetter. The

mean streamflow changes mapped by Jeton et al.

(1996) — corresponding to the temperature and precipi-
tation changes in each of the 20,000 resampled ensem-
ble realizations (from each of the time slices in Figure 4)

— were accumulated, and the resulting PDFs of stream-
flow amount and timing are shown in Figure 6.


The PDFs of annual streamflow changes in Figure 6 are

similar to the PDFs of precipitation change in Figure 4,

reflecting the strong control that precipitation change

exerts on total streamflow amount, as well as the near-
ly complete buffering of streamflow amounts against

responses to temperature changes, discussed at length

by Jeton et al. (1996). By the end of the 21st Century,

streamflow amounts are outlying biased towards a drier

mean and mode, although the much wetter Canadian

climate models ensures a heavy tail of significantly

wetter streamflow-amount realizations.


The corresponding projections of streamflow timing

(Figure 6, bottom panel) mostly reflect the warmer

temperatures projected by all the models, although


concurrent precipitation changes in the realizations

couple nonlinearly with the temperature effects in the

Jeton et al. (1996) response surfaces to yield much

broader and more multimodal timing distributions.

Some of the multimodal character of the timing PDFs

presumably derives from the bimodal character of the

joint temperature-precipitation distributions (Figure 5).

By 2025, years with earlier than normal median-flow

dates (1951–1980) are all but eliminated among the

resampling-driven realizations. By the end of the 21st

Century, the most common median-flow date projec-
tions are over a month earlier than the 1951–1980

norms; see Stewart et al. (2004) for a more compre-
hensive and geographically far-reaching discussion of

this phenomenon.


Now, consider the differences between the messages

and information content of Figure 1 and Figure 4 (or

6). How attractive does the bookending strategy look,

once the PDFs have been examined? From the

spaghetti of Figure 1, we surmised mostly that project-
ed temperature changes are more unanimous than are


Figure 6. Distributions of annual streamflow amounts and

median-flow dates (i.e., date by which half of a year’s flow is

past) in the North Fork American River, in response to 20,000

resampled climate-change realizations (illustrated in Figure 4).

Streamflow responses were estimated from response sur-
faces mapped in Jeton et al. (1996, figures 16b and 17c).


Figure 5. Time slices of the joint temperature-precipitation distribu-
tions of resampled ensemble realizations from Figure 3. Circles

indicate values in the original 18-member ensemble of projections

(Figure 1 ).
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the projections of precipitation change, and that very

wet projections are a significant threat (or opportuni-
ty). The PDFs, in contrast, suggest that the envelope of

(most likely) temperature projections spreads more

through time than does the envelope of precipitation

changes. The less-than-obvious tendency for the mode

of precipitation changes to drift towards drier condi-
tions is also much clearer in the PDFs. In fact, no new

information has been added to the ensemble by the

resampling procedure, but our understanding of the

potentialities that the ensemble represents is arguably

much clearer. In addition to this clarification, the users

of such an ensemble have much more freedom to

select their own levels of risk aversion when ensemble

results are quantified by PDFs rather than by spaghetti.

That freedom is needed, because risk is not simply the

likelihood of an adverse impact; rather, risk is essen-
tially a product of likelihood and cost of that impact.

Consequently, in applications, each newly discovered

potential impact brings with it its own unique require-
ments from the projection ensembles. A more PDF-
centric approach is the more proactive approach.


Although the resampling procedure used in this section

added no real information to the ensembles, the proce-
dure can readily be extended to add crucial information

in clear and helpful ways. For example, the resampling

procedure used above treated each model’s projections

as equally likely and each emissions scenario as equally

likely. However, the procedure can be modified to reflect

any a priori preferences for, or beliefs in, the various

models and scenarios. For example, if the accuracies of

each model were quantitatively indexed by a measure of

the likelihood that its projections were the most accurate

(among all the models considered), then that index

could be used to weight the fraction of samples that

each model would contribute to the resampling proce-
dure. This would mean that the most accurate models

would contribute the most to the resampled distribu-
tions, and the least accurate models would contribute

the least. Similarly, if the likelihood of emissions scenar-
ios could likewise be ranked quantitatively, then the

resampling probabilities could be adjusted to reflect

those outcomes as well.


To illustrate an outcome from such an experiment,

consider that three (PCM, HadCM3, and ECHAM) of the

six models used in the present analysis are generally


recognized as the more realistic climatic representa-
tions in that these models require no special correc-
tions to their air-sea connections. In contrast, in the

other models (Canadian, Australian, and Japanese), the

modelers must insert extra heat exchanges between

ocean and atmosphere preemptively or else the models

drift into unrealistic climatological conditions when

simulations last many years. Figure 7 shows the result

of resampling the temperature and precipitation pro-
jections in Figure 1 while choosing the projections

from the “preferred” models twice as often as those

from the other models. This version of the resampled

distributions of temperature and precipitation changes

is not much changed from Figure 4 by this weighting:

Temperature projections still spread roughly as much

as in Figure 4 and the central tendencies of the warm-
ing remain the same. Precipitation projections remain

centered on “no change” and spread slightly less over

the course of the 21st Century. This calculation illus-
trates a more general conclusion—reached independ-
ently by both Philip Duffy (Lawrence Livermore

National Laboratory, oral communication, 2004) and

Thomas Wigley (National Center for Atmospheric

Research, written communication, 2004)—that the

averages and scattering of projections from ensembles

of all current models are not significantly different

from the corresponding averages and scatter when

only those models that seem to be most skillful at

reproducing the present-day climate are included. It

seems that the differences among models that lead us,

at present, to trust one more than another are not the

differences that yield the most important climate-
change differences for California. Some other, more

pertinent way of choosing which models to trust will

be needed if we are to reduce uncertainties in projec-
tions of California’s 21st Century climate change.


SUMMARY


In current climate-change applications, the availability

of ensembles of projections that contain very large num-
bers of members and ensembles that evenly mix model

uncertainties with emissions uncertainties are rare. The

availability of such ensembles would substantially ease

statistical analyses and interpretations, and could be

used to judge simulation skill. This study describes and

demonstrates the clarifications that are possible when
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projection-distribution functions can be estimated quan-

titatively by resampling much smaller ensembles.


A PDF, of the simple form used here, simply provides


more information of direct relevance to resource man-

agers, engineers, utilities, farmers, and others, and a


clearer depiction of central tendencies and the risks at


the extremes than does the typical spaghetti plot.


Although little or no actual new information was


introduced by the resampling procedure in the exam-

ple shown here, it already provides an objective


method for developing reproducible estimates of


detailed distribution functions from small ensembles


that clarifies the implications of an available climate-

change ensemble considerably. Information describing


the historical skills of contributing models, and proba-
bilities of various forcing scenarios, can readily be

added to improve the uncertainty estimates. The result

is a bridge between subjective interpretations of

spaghetti plots of small ensembles and the kinds of

visualizations and calculations that could be accom-
plished with much larger ensembles. Thus, the meth-
ods and ensemble explored here suggest that:


Depicting climate-change ensembles in terms of the

density distributions in the projection ensembles can

provide new insights into the projections that are not

obvious or directly measured in the more common

spaghetti diagrams/listings—even when no new infor-
mation is added in the process of estimating those dis-
tributions. In the example presented in this paper,

spaghetti diagrams had fueled the idea that precipita-
tion projections were more scattered than temperatures,

and that a very wet California was a strong possibility.

An objective depiction of the distribution of projections

indicated instead that the ensemble distribution of tem-
perature projections spreads more (in relative terms)

than does the corresponding precipitation distribution,

and that the wet projections are true outliers with much

smaller changes in precipitation being much more com-
mon (likely) among current projections.


The process of estimating projection distributions

from the ensemble spaghetti offers a natural opportu-
nity for actually adding information to the interpreta-
tion of ensembles. In the resampling procedure used

here, skill scores for the models and any outside

information about the relative likelihoods of various

emissions scenarios can easily be used to condition

the resampling probabilities, so that the resulting esti-
mates of projection probabilities more nearly reflect

the strengths and weaknesses of each contributing

ensemble member. Such weighting is not an option

unless the step from a spaghetti plot to a projection

distribution is taken.


Uncertainties from both model differences and emis-
sions scenarios cloud our view of the future climate.

The even-handed mixture of projections from both

different models and different forcings is an ideal that

should be pursued as much as possible, and that

should be brought to California applications at the

earliest feasible date.


Figure 7. Same as Figure 4, except that the dashed curves are

generated with climate projections from the PCM, HadCM3, and

ECHAM models selected for resampling twice as often as projec-
tions from the Canadian, Australian, and Japanese models.
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For the future, besides working to develop and use


more relevant model skill scores in the resampling pro-

cedure, it is worth noting that the procedure demon-

strated here is currently only suited for use with a


handful of projected variables. Estimating the joint


PDFs of simultaneous projections of many variables or


many locations will require modifications and exten-

sions of the procedure. However, the benefits of


replacing ensemble spaghetti plots with quantitative


estimates of the likelihood of various projections make


that extension a worthwhile goal.
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APPENDIX


Component-resampling method


Consider an ensemble of n climate-change projections

of, say, temperature at a given model grid cell, each m


time steps long, and each containing elements {xij,


i=1, m} where j indicates the ensemble member. A

PCA of the n projections vectors, with all expectations

calculated across the ensemble members, as described

in detail by Dettinger (in review), will decompose the

original ensemble into m loading patterns {ei, i=1, m}


and m corresponding sets of amplitudes {pij, j=1, n}.


By construction, the loading patterns (like empirical

orthogonal functions) and the amplitudes (like princi-
pal component series) both form orthogonal bases for

describing the original ensemble. The amplitudes

measure the part of the original ensemble member that

parallels each loading pattern. The orthogonality of

amplitudes means the amplitudes of one of the ensem-
ble members projected onto a particular loading pat-
tern is statistically independent of its amplitude with

respect to any of the other patterns. The k-th original

(properly standardized) ensemble member can be

recovered completely by:


j=m


xik = ∑ eij pjk


j=1


Another new projection vector with statistics that are

indistinguishable from those of the original ensemble

elements, to second order, can be obtained by scram-
bling the amplitudes (picking the k indices in equation

(1) at random, with replacement, from k=1 , n, at each

step in the summation). Because the amplitudes are

independent from loading pattern to loading pattern,

the first- and second-order statistics do not depend on

which one is chosen at each step.


The procedure is as follows:


1. Calculate the ensemble mean values mi of xij at each

time i, with expectation taken across the ensemble:


mi = ∑ xij /n


j


and subtract these means from the climate-change

projection vectors to obtain centered (zero-mean at

each lead time) projection vectors. Any mean or trend

shared by all the ensemble members is removed by this

step. When the ensemble is resampled later, this tem-
porally varying ensemble mean can readily be added

again.


2. Calculate the ensemble standard deviations si of the


centered projections at each time i, again with

expectation taken across the ensemble, and divide the

centered projection vectors at each lead time by the

corresponding standard deviation to obtain a standard-
ized projection ensemble (zero mean and unit variance

at each lead time). This ensures that any temporal evo-
lution of the spread of the ensemble is captured and

can be reintroduced after resampling. Removing the

temporally varying standard deviation at this point in

the analysis ensures that inter-ensemble variations in

the early part of the projections (when the ensemble

typically has not spread much) are treated in the same

detail as those later in the projections.


3. Compute the cross correlations of the standardized

projections at each time and lag, with expectations

taken across the ensemble. The resulting cross-correla-
tion matrix is m x m, and summarizes the covariations

of the projections at a given time in each ensemble

member with the projection one time step later, two

time steps later (and so on) in the same and other

ensemble members. In some applications of the

method, the number of ensemble members may be

much smaller than m, in which case the principal com-
ponents may not all be well estimated; however, unlike

most other applications of PCA, all m loading patterns

are recombined (below) in each newly formed ensem-
ble member. As a result, this limitation does not affect

the results (Dettinger, in review).


4. This cross-correlation matrix is decomposed into

loading patterns and their attendant amplitude series

by PCA. The loading patterns describe the temporal

evolution of the ensemble members in the most eco-
nomical form. For example, perhaps most ensemble

members trend throughout from warmer towards cool-
er, while a few might increase for a while and then

decrease like the others. The two behaviors would tend

to be captured by two distinct loading patterns, and
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those ensemble members in the former category

would be weighted more heavily in the former loading

pattern; whereas, the latter ensemble members would

be weighted more heavily on the latter pattern. These

weights are measured by the respective amplitude

series. For a given loading pattern, the amplitude

series measures the weight (similarity) of time series

of each ensemble member in turn to that pattern, and

a given ensemble member’s amplitude for any of the

loading patterns is statistically independent of its

weight on any other loading pattern.


5. Randomly resample the PCA results to generate as

many additional “projection” realizations as described

in the first equation. Because the amplitudes for the

various loading patterns are, independent of each

other, by construction it does not matter which

ensemble member’s amplitude for a given loading pat-
tern is mixed with which other ensemble member’s

amplitude for another loading pattern. With m load-
ing patterns, each of which can take on any of the n


amplitudes, the number of distinct resampled realiza-
tions that can be constructed is mn; e.g., in a 10-
member ensemble of 20-year projections, 2010 resam-
pled realizations can be generated. If, as in many

PCA, only about 20% of the amplitude series con-
tributed much variance to the realizations, the effec-
tive candidates for independent samples would drop

to perhaps 410 or about 1,000,000 possible independ-
ent samples, which is still a useful expansion of the

apparent size of the ensemble.


6. Having reconstructed a “new” member of the stan-
dardized ensemble of climate-change projections by

resampling (in Step 5), rescale the result by the time-
varying ensemble standard deviations and then add the

time-varying ensemble means. By this rescaling, the sta-
tionary and shared variability are restored, and the large

numbers of results can be ranked and summarized in

detailed histograms to obtain PDFs as fine as desired.


The method ensures that features shared by all mem-
bers are shared by the component-resampled ensemble

members, that variations shared by subsets of the

ensemble members are reproduced realistically and in

proportion to their occurrence in the original ensemble,

and even that the noisy (unshared) variations are faith-
fully captured and reproduced in the component-

resampled ensemble. Because the method is based on

PCA, the component-resampled ensemble is described

mostly in terms of its first and second statistical

moments, so that the resulting smoothed PDFs tend

toward Gaussian shapes; however, that tendency is rel-
atively weak. When present, bifurcations in the ensem-
ble of projections should be captured in the PCA load-
ing patterns and weighted appropriately (in both ampli-
tude and numbers of participating ensemble members)

by the corresponding amplitude series. Then, when the

amplitude series are resampled randomly, both the

shapes and relative frequencies of the bifurcations are

naturally reproduced in a satisfying way.


One way to picture the method is to imagine that the

original ensemble has been filtered into a large number

of narrow and non-overlapping frequency bands. The

result is that an ensemble member might have power A

at low frequencies, power B at medium frequencies, and

so on. Another ensemble member would have a differ-
ent set of powers in each frequency bin. Now, assuming

that an ensemble’s power in the first frequency bin has

little bearing on its power in the second, and so on, one

can imagine generating new ensemble surrogates with

the same statistical properties as the original ensemble,

by taking the filtrate from one ensemble member (at

random) from the first frequency bin, adding to it the

filtrate from an ensemble member (at random) the sec-
ond bin, and so on, until samples from all the frequency

bins have been incorporated. The sum of the frequency

components constitutes a new time series with statistical

properties that are derived strictly from the ensemble’s

overall power spectrum. For example, if the 10-year

periodicities in the ensemble members were most pow-
erful and 8-year periodicities notably lacking, the

resampling would still yield members with powerful 10-
year periodicities and weak 8-year periodicities, because

the resampling only uses observed values from each fre-
quency bin. The present method improves on such a

hypothetical frequency-binned resampling by (1) guar-
anteeing—by the construction of the PCA decomposition

of the ensemble members—that the various elements

resampled (the loading patterns, which would corre-
spond to sine waves of given frequency in the hypo-
thetical) are always independent of each other, and (2)

allowing more flexibility of loading-pattern shape than

is offered by a simple frequency-domain approach.
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