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1. INTRODUCTION AND CONCLUSIONS

Striped bass are a popular game fish introduced into the Sacramento-San Joaquin Bay-Delta
estuary in the late 1800’s. Striped bass are a large, long-lived, and widely distributed predator
that preys on a variety of fish and macroinvertebrates, including fish listed for protection under
the California (CESA) and/or federal Endangered Species Acts (FESA). These prey species
include juvenile winter-run Chinook salmon (endangered under both CESA and FESA), spring-
run Chinook salmon (threatened under both CESA and FESA), Central Valley steelhead
(threatened under FESA), and delta smelt (endangered under CESA and threatened under
FESA). For example, Nobriga and Feyrer (2007, p. 9) concluded that “striped bass likely
remains the most significant predator of Chinook salmon, Oncorhynchus tshawytscha (Lindley
and Mohr 2003) and threatened Delta smelt, Hypomesus transpacificus (Stevens 1966), due to its
ubiquitous distribution in the Estuary and its tendency to aggregate around water diversion
structures where these fishes are frequently entrained (Brown et al. 1996)”.

The NMFS (2009b) draft Recovery Plan for Central Valley salmon and steelhead concludes that:
(1) predation on winter-run Chinook salmon is a “major stressor”” with very high importance (p.
42, 48), (2) restoring the ecosystem for anadromous salmonids will require, among other actions,
“significantly reducing the nonnative predatory fishes that inhabit the lower river reaches and
Delta” (p. 90), and (3) reducing abundance of striped bass and other non-native predators must
be achieved to “prevent extinction or to prevent the species from declining irreversibly” (p. 157,
183, 190).

In this report I review prior studies of the diet of striped bass and CDFG’s prior estimates of the
predation by striped bass on listed fish. I then explain my estimates of predation by striped bass
on listed fish, and I discuss how a reduction in striped bass abundance and predation resulting
from deregulation would increase the survival of listed fish.

Conclusions of my analysis include:

1. CDFG’s 1998 published estimates of striped bass predation on listed fish were
based on many incorrect assumptions and omissions that tended to underestimate
striped bass predation mortality.

2. Predation by striped bass in the rivers upstream of the Delta, particularly the
Sacramento River, on juvenile emigrating salmon and steelhead is substantially
higher than reflected in CDFG’s published estimates. Striped bass predation in
rivers tributary to the Delta appears to be the largest single cause of mortality of
juvenile salmon migrating through the Delta.

3. The high rates of striped bass predation within the Sacramento River are
supported by, inter alia, striped bass diet studies and recent survival studies that
have shown high mortality of salmon and steelhead -- approximately 90% --
before they reach the Delta.



My estimates of striped bass predation on the listed species for the time periods
used in CDFG’s predation estimates are at least:

(1) Winter-run Chinook salmon -- 21%;
(2) Spring-run Chinook salmon -- 42%;
(3) Central Valley steelhead -- 7-15%; and
(4) Delta smelt -- 13%.

Mortality to these listed fish as a result of striped bass predation, particularly for
salmonids, greatly increases the probability of their extinction and reduces the
probability of species recovery.

Striped bass predation on delta smelt is probably minimal under the current
conditions of record low population abundance of delta smelt, low densities,
broad geographic distribution, and higher turbidity waters. But even minimal
predation increases the probability of delta smelt extinction and reduces the
probability of species recovery.

Assuming that elimination of the striped bass sport-fishing regulations would
reduce the striped bass population by approximately 60-70%, striped bass
predation mortality on the listed species would be reduced by at least the
following approximate percentages:

(1) Winter-run Chinook salmon by 14%;
(2) Spring-run Chinook salmon by 27%:;
(3) Central Valley steelhead by 5-10%; and
(4) Delta smelt by 0-3%.

The net population-level benefits of reducing striped bass predation would differ
for the salmonids and delta smelt. For delta smelt, other predators are likely to
replace striped bass, and other factors would minimize the net population-level
benefits of a reduction in striped bass predation. Salmon and steelhead should
benefit greatly from the reduction in striped bass predation, because there are few
other predators within the rivers, fish screens have been installed in previously
unscreened diversions, upstream habitat has been improved for salmon and
steelhead spawning and rearing, and harvest of listed salmonids has been reduced.
Reducing striped bass predation on juvenile salmon and steelhead in the rivers
would substantially increase their abundance, decrease the probability of
extinction, and improve the probability of recovery of the species.

Allowing fishermen to reduce striped bass predation via deregulation is probably
the most efficient and cost-effective method to contribute to recovery of Central
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Valley salmon and steelhead. Unless this is done, expensive management
programs designed to improve their survival within the lower Delta are unlikely to
save these listed species.

2. QUALIFICATIONS

My name is Charles H. Hanson. I am the owner of Hanson Environmental, Inc. located at 132
Cottage Lane, Walnut Creek, CA. My academic training includes a B.Sc. and M.Sc. in fisheries
from the University of Washington, studies in environmental engineering at the Johns Hopkins
University, and a Ph.D. in fisheries and ecology from the University of California, Davis. I am a
life member and certified fishery biologist by the American Fisheries Society.

I have more than 31 years of experience in freshwater, estuarine, and marine biological studies. |
have contributed to the study design, analysis, and interpretation of fisheries, stream habitat, and
stream flow (hydraulic) data used to develop habitat restoration strategies, aquatic Habitat
Conservation Plans, Endangered Species Act consultations, and environmental analyses. I have
conducted research and analyses involving striped bass in the San Francisco Bay-Delta estuary
since 1976 as well as prior research on striped bass in Chesapeake Bay and the Potomac River. |
have also conducted evaluations of the effectiveness of various water diversion fish screening
systems, assisted in fish screen design and permitting, and developed operational modifications
to reduce organism losses while maintaining operational reliability of water projects and
hydroelectric systems. I have directed numerous investigations and environmental impact
analyses for projects and have participated as an expert witness on fisheries and water quality
issues in numerous public hearings and litigation. I have been extensively involved in incidental
take monitoring and investigations of endangered species, development of Recovery Plans, ESA
consultations, listing decisions and identification of critical habitat. I served as a member of the
USFWS Native Delta Fish Recovery Team, Central Valley Technical Recovery Team, USFWS
Delta Smelt Recovery Team, National Marine Fisheries Service Central Valley Technical
Recovery Team, Klamath Basin Sucker Status Review Team, numerous technical advisory
committees, and as science advisor to settlement negotiations. I am currently participating in
developing the Bay Delta Conservation Plan (BDCP) based on a Habitat Conservation Plan
(HCP) that would contribute to the recovery of listed fish inhabiting the Bay-Delta estuary and
tributary rivers. I have authored more than 75 technical and scientific reports.

A copy of my more detailed resume is included as Exhibit 1.
3. CDFG ESTIMATES OF STRIPED BASS PREDATION ON LISTED FISH

3.1 Background

Striped bass are a large non-native predatory fish introduced into the Bay-Delta estuary from the
east coast over 100 years ago. Since their introduction, striped bass have preyed on native fish
and other aquatic species inhabiting the estuary or using the estuary as a migratory corridor
between coastal marine waters and upstream freshwater habitats. In recent years, however,
several of the Delta’s native fish species, including delta smelt, winter-run Chinook salmon,
spring-run Chinook salmon, and Central Valley steelhead have declined in abundance and are
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currently listed for protection under the CESA and/or the FESA. Over the past 150 years there
have been increased stressors on the Bay-Delta aquatic ecosystem, such as: introductions of non-
native predators and competitors, major changes to the quality and availability of physical
habitat for aquatic species, levee construction and reclamation, construction of dams and
reservoirs, water project operations, river and Delta water diversions, chemical contaminants,
and other factors. The cumulative effects of these changes have resulted in the declines of many
of the native fish. Predation mortality by striped bass represents a significant source of mortality
to these listed fish.

Because of their large size, abundance, and predatory behavior, striped bass support one of the
largest recreational fisheries within the Delta. CDFG has been a strong advocate for the
protection of the striped bass fishery. In order to protect the striped bass population from
overharvest by anglers and to maintain striped bass abundance, the California Fish and Game
Commission has followed CDFG’s recommendations and adopted a striped bass abundance
policy and regulations to protect the striped bass population (e.g., minimum size of 18 inches,
maximum bag limit of two fish per day) that are enforced and promoted by CDFG.

Striped bass reside in the Delta year-round, and therefore resident estuarine fish such as delta
smelt, whose geographic distribution throughout their life span is within the Delta, are vulnerable
to predation mortality. Close to half of the 1 to 1.5 million adult striped bass also migrate
upstream from the Delta into the main tributary rivers, primarily during the winter and spring
prior to spawning; although some striped bass reside in the rivers year-round (Stevens 1963).
Striped bass spawning occurs in the spring within the main rivers such as the Sacramento River.
While inhabiting the rivers, subadult and adult striped bass actively prey on juvenile Chinook
salmon (Stevens 1963, Thomas, 1967, Merz 2003, Tucker et al. 1998, 2003). During the winter
and spring when striped bass are most abundant in the rivers, juvenile Chinook salmon and
steelhead are migrating downstream to the ocean; and it this co-occurrence of predatory striped
bass and juvenile salmon and steelhead that promote predation on them.

The risk of predation on juvenile salmonids within the river is further increased by the narrow
channel (typically 300-500 feet across and 30 feet deep or less) through which all of the juveniles
must pass, which reduces the ability to avoid predation. Changes in the land use within the
rivers to include riprap stabilized levees and structures such as bridges, marinas, water diversion
structures, and others (Stevens 1963, Tucker et al. 1998, 2003) further increase the vulnerability
of juvenile salmonids to predation within the rivers. The salmon populations begin as juveniles
who must migrate through the Sacramento River and evade predation by striped bass and other
predators. Central Valley steelhead are also primarily produced in the Sacramento River system,
although small populations of steelhead also occur in other rivers. Studies have shown mortality
of juvenile Chinook salmon and steelhead in the Sacramento River upstream of the Delta to be
approximately 90% in recent years (MacFarlane ef al. 2008, NMFS 2009). Striped bass are the
major predator on salmon and steelhead within the Sacramento River (see Section 3.3.1 below).

A variety of studies have been conducted within the Bay-Delta to determine the diet of striped
bass, their life history and population dynamics within the estuary and tributary rivers, and more
recently the effects of striped bass predation mortality on listed fish (see summary of prior
predation research presented in Exhibit 2). The earlier diet studies were primarily designed to
collect basic information on the prey of striped bass and how the striped bass diet varied among

6



age classes, seasonal periods, and locations within the estuary. Because striped bass are one of
the most popular fish harvested by recreational anglers, CDFG has developed programs to
estimate the abundance and age distribution of striped bass, promote striped bass abundance,
assess mortality rates, and collect other information used in the management of the striped bass
population. Results of several of the CDFG monitoring programs showed evidence of a
declining trend in adult striped bass abundance between the 1960°s and the 1980’s. To increase
the abundance of striped bass available to recreational anglers, CDFG initiated a striped bass
hatchery program to augment natural reproduction within the estuary.

In recent years investigators and regulatory agencies have expressed concerns regarding the
effects of predation by striped bass, in combination with other stressors, on the Pelagic organism
Decline (POD — Baxter ef al. 2008, Loboschefsky et al. 2009), increasing the probability of
extinction for winter-run Chinook salmon (Lindley and Mohr 2003), effects on listed fish
(NMFS and USFWS 1999), and predation mortality as a factor affecting fish inhabiting the Delta
and tributary rivers (Nobriga and Feyrer 2007, Tucker et al 1998, 2003, MacFarlane ez al. 2008,
and many others). There has been increasing concern regarding the predation by striped bass and
other fish on the survival of juvenile Chinook salmon, delta smelt, and other fish at predation hot
spots such as the Red Bluff Diversion Dam and Clifton Court Forebay (Tucker et al. 1998, 2003,
Gingras 1997, Clark et al. 2009, SJRGA 2007, 2008, and others). Even CDFG biologists have
recommended reconsideration of the striped bass abundance policy (DFG26814, DFG37615). As
noted above, NMFS’s October 2009 draft Recovery Plan for salmon and steelhead identifies
predation as a “major stressor” and calls for a significant reduction of striped bass and other non-
native predators to prevent extinction of these species (NMFS 2009b).

This report will show that striped bass predation is a much greater cause of mortality of the listed
species than previously reported by CDFG.

3.2 CDFG Predation Estimates

3.2.1 CDFG Published Predation Estimates

In order to obtain a permit to stock striped bass in the Delta and to address concerns regarding
striped bass predation on listed fish, CDFG (1998 a,b) developed a series of estimates of the
magnitude of striped bass predation mortality on listed fish. I have reviewed the reports and
predation estimates prepared by CDFG, scientific information on predation by striped bass,
results of specific predation studies conducted at various locations within the Bay-Delta system,
and reports by investigators and regulatory agencies regarding the potential effects of striped
bass predation on the abundance and survival of listed fish.

With the petitions and listings of winter-run Chinook salmon, spring-run Chinook salmon,
Central Valley steelhead, and delta smelt under the CESA and/or FESA in the early 1990’s, and
the need to obtain incidental take authorization from NMFS and US Fish and Wildlife Service
(USFWS) for the striped bass stocking program, CDFG prepared an evaluation of the predation
mortality on listed fish based on population abundance during the period from 1993-1996. The
analyses also considered various levels of striped bass hatchery augmentation in support of an
incidental take application submitted by CDFG to NMFS and USFWS. The estimated levels of



predation mortality on listed fish presented by CDFG in a 1998 draft and final Environmental

Impact Report (EIR) and draft Conservation Plan and incidental take permit application,
assuming various levels of striped bass abundance, without stocking, were as follows:

Estimated percentage mortality on listed fish by striped bass (CDFG 1998a, 1998b).

Striped Bass Adult Abundance

515,000 712,000V 765,000 1,100,000
Delta smelt 3.5% 4.9% 5.3% 7.6%
Winter-run
Chinook salmon 4.0% 5.6% 6.0% 8.7%
Spring-run
Chinook salmon 2.2% 3.2% 4.9%
Central Valley
steelhead <2.2% <3.2% <4.9%

(1) 712,000 adult striped bass in 1994 was the lowest point in CDFG’s estimate of striped
bass population abundance. Abundance has averaged approximately 1 million adult
striped bass in recent years — See Section 3.4.2. CDFG (1998a,b) stated that predation
mortality on listed fish would increase or decrease in proportion to changes in striped
bass abundance and the above predation estimates are proportional to the striped bass
population abundance. The predation calculation spreadsheets (see PREDTION.WK4
included on the DVD) provided by David Kohlhorst, the CDFG biologist who produced
these estimates, provide slightly higher predation estimates than those reported above.

The basic approach used by CDFG to estimate predation mortality by striped bass relied on
results of diet studies conducted in the estuary during the early and mid-1960’s (Stevens 1966,
Thomas 1967) and the seasonal and geographic distribution of striped bass (ages 1, 2, and 3+).
CDFG applied various adjustments to the calculations to reflect changes in prey abundance over
time and different levels of striped bass abundance reflecting alternative hatchery stocking
options.

In preparing the estimates of predation mortality by striped bass on listed fish, CDFG used
results of two diet studies to estimate the frequency of occurrence of listed fish and other prey
eaten by striped bass of different ages (age 1, age 2, and age 3+) by season in different
geographic regions of the Delta and lower reaches of the Sacramento and San Joaquin Rivers.
The diet studies, conducted by Stevens (1966) and Thomas (1967) primarily focused on the diet
of striped bass collected from the Delta and Suisun Bay, with little data and no discussion of
striped bass predation upstream within the Sacramento River. Delta smelt live their entire life in
the Delta. The Delta is primarily a migratory corridor for juvenile salmon and steelhead. This is
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important because, as noted by Stevens (1963) in a diet study that was omitted from the CDFG
predation analysis, the vulnerability of juvenile salmonids to striped bass predation is
substantially lower in the Delta where channels are miles wide and the prey fish are not
concentrated, in contrast to the tributary rivers where all of the juvenile salmon and steelhead are
concentrated within narrow river channels.

The frequency of occurrence of various prey species in striped bass stomachs was then used in
the CDFG calculation along with information and estimates of the abundance of age 1, 2, and 3+
striped bass within each of the regions used in the analysis during each season. The initial
estimate of predation was based on (1) the abundance of striped bass of a specific age within a
region during a season, and (2) the frequency of occurrence of the prey observed in the diet
studies.

Based on the low 6% striped bass predation rate for winter-run Chinook salmon developed by
CDFG, NMFS (Lindley and Mohr 2003) developed a model for winter-run Chinook salmon that
estimated the probability of extinction and probability of recovery of winter-run Chinook
salmon. The model estimated that an individual winter-run salmon had about a 9% chance of
being eaten by a striped bass. The model estimated that winter-run salmon had a 23% probability
of extinction (assuming density dependant survival) when the striped bass population was 0 and
a 30% probability of extinction when the striped bass adult population abundance was 700,000
fish, a 7% increase in the probability of extinction. The model was also used to estimate the
probability of winter-run salmon extinction assuming an adult striped bass abundance of 3
million adult striped bass. The probability of winter-run extinction increased from 30%
assuming 700,000 adults to 55% assuming 3 million adult striped bass, a 25% increase in the risk
of winter-run salmon extinction. The model estimated that the probability of recovery of winter-
run salmon would decrease from approximately 14% to 10% at adult striped bass abundance
levels of 0 and 700,000 fish, assuming density dependant survival. The model estimated that the
probability of recovery decreased from 10% assuming 700,000 adult striped bass to 4%
assuming 3 million adult striped bass in the population. Based on results of these and similar
analyses, NMFS (1996) concluded that “The incremental increase in mortality that the winter-
run Chinook salmon population would incur (estimated to be at least 3.5%) from DFG’s proposal
to increase striped bass stocking represents a new and significant impact to the population, and in
NMEFS’s view has the potential to appreciably reduce the likelihood of survival and recovery of
winter-run Chinook salmon” (DFG038312). As a result of the NMFS finding, the CDFG striped
bass hatchery stocking program was later discontinued as an effort to increase striped bass
abundance within the estuary.

3.2.2 CDFG Unpublished Predation Estimates

Documents provided by CDFG in this litigation (DFG03776 through DFG037766 attached to
this report as Exhibit 3 Tables 1-4) show results of an unpublished bioenergetic-based analysis of
striped bass predation on winter-run Chinook salmon. The bioenergetics approach used
information on the abundance of striped bass and their seasonal and geographic distribution by
age (ages 1-8+). The total amount of food consumed is then calculated. Using results of the diet
studies, the total food biomass is allocated between fish biomass, and shrimp biomass. The fish
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biomass estimate is then allocated to the biomass that represent salmon and subsequently to the
amount of biomass that were juvenile winter-run salmon. The number of juvenile winter-run
salmon consumed is then estimated based on the mean weight of individual juvenile winter-run
salmon within each region and season. The estimate of the number of winter-run salmon
consumed within a year is then calculated as the sum of the seasonal estimates. Estimates of
juvenile winter-run salmon predation by striped bass were made using the bioenergetic approach
for 1993-1996. Results of the predation estimates are show below:

Juvenile Winter-run Salmon Predation by Striped Bass using Bioenergetics Approach

Year Winter-run Salmon Winter-run Striped Bass Predation
Abundance Salmon Rate on Winter-run

Consumed by Salmon
Striped Bass

1993 273,157 53,859 19.7%

1994 90,545 4,450 4.9%

1995 74,491 64,658 86.8%

1996 398,107 41,149 10.3%

Average 209,075 41,029 30.0%

Results of CDFG’s bioenergetics approach to estimating striped bass predation on winter-run
salmon were not disclosed in the 1998 CDFG EIR or incidental take application. CDFG’s
published predation estimate of 5.6% for winter-run salmon assuming a striped bass abundance
of 712,000 fish, or 8.7% assuming 1.1 million adult striped bass (See Section 3.1) were
substantially lower than the striped bass predation estimates developed based on the
bioenergetics calculation presented above and in Exhibit 3. I could not determine from the
available documents whether CDFG did similar bioenergetic estimates of predation on the other
listed species, and I do not know why these bioenergetic estimates for winter-run salmon were
not published.

3.3 Sources of Bias and Error in CDFG’s Published Predation Estimates

I reviewed the detailed methods and assumptions used by CDFG in developing the striped bass
predation estimates for listed fish presented in the draft and final EIR and associated incidental
take application for the striped bass management program (CDFG 1998a; DFG023368 through
DFG023899). I also reviewed the analysis of the CDFG predation estimates developed recently
by CDFG (Dubois 2009). I also spoke with Dave Kohlhorst (CDFG retired) who developed the
original CDFG predation estimates and obtained from Mr. Kohlhorst the spreadsheets
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(PREDTION.WK4; a copy of the spreadsheet in included in the accompanying CD) used in the
predation calculations. I describe some of the sources of error and bias in the previous CDFG
predation estimates, which underestimated striped bass predation mortality:

3.3.1 Up-River Predation

The Sacramento River provides spawning and rearing habitat, and serves as the migratory
pathway for adult and juvenile winter-run and spring-run Chinook salmon and Central Valley
steelhead. The mainstem Sacramento River is currently the only spawning and rearing habitat
for winter-run salmon (see Figure 1 for winter-run salmon distribution). Spring-run Chinook
salmon are limited in their freshwater distribution to the Sacramento River and its tributaries
(Figure 2). Central Valley steelhead predominately inhabit the Sacramento River and its
tributaries, but also occur in the Cosumnes, Mokelumne, and San Joaquin river watersheds
(Figure 3).

Figure 1. Sacramento River winter-run Chinook salmon
distribution. Source: NMFS.
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Figure 2. Central Valley Spring-run Chinook salmon
distribution. Source: NMFS.

Figure 3. Central Valley steelhead distribution. Source: NMFS.



Subadult and adult striped bass have a broad geographic distribution within the estuary and the
upstream reaches of the main tributary rivers. Several hundred thousand subadult and adult
striped bass migrate upstream into areas such as the Sacramento River during the late winter and
spring as part of their spawning migration (PREDTION.WK4 spreadsheets). These subadult and
adult striped bass are known to forage on a variety of fish species within the upstream habitats,
especially juvenile Chinook salmon (Tucker ez al. 1998, 2003, Stevens 1963, Thomas 1967,
Merz 2003). With so many striped bass inhabiting the river during the late winter and spring,
and given the available food resources, striped bass must consume large numbers of salmon and
steelhead (Tucker ef al. 1998, Stevens 1963, Merz 2003). High striped bass consumption rates
are consistent with the unpublished CDFG bioenergetic-based winter-run salmon predation
estimates discussed in Section 3.2.1.

Stevens (1963) found that striped bass predation mortality was high in the lower Sacramento
River with particularly high predation mortality occurring in the immediate vicinity of the
Paintersville Bridge (located on the Sacramento River near Courtland). Stevens (1963)
estimated that 39,000 to 78,000 juvenile Chinook salmon were preyed on by striped bass at the
Paintersville Bridge alone during June, July, and August 1962. In the reach of the lower
Sacramento River sampled by Stevens in June, juvenile Chinook salmon were the dominant prey
in the diet of striped bass with 88.2% of the stomachs that contained prey having salmon (207
salmon were observed in 105 stomachs containing prey). Salmon in June were found to
represent 86.5% of the food volume in striped bass stomachs (averaging approximately 2 salmon
per bass that had prey in their stomach). At the Paintersville Bridge in June, salmon were present
in 90.7% of the striped bass stomachs with food and comprised 82.4% of the diet. Salmon were
also the dominant prey in striped bass stomachs collected from the Sacramento River in June by
Stevens (1963) at the confluence of Sutter Slough and the Sacramento River and near Freeport.
Juvenile salmon were also a major component in the striped bass diet in the Sacramento River in
July and August sampling (Stevens 1963). Despite the high percentage of juvenile Chinook
salmon in the diet of striped bass in the Sacramento River reported by Stevens (1963), there was
no substantive discussion of this issue in the CDFG predation estimates.

The striped bass diet studies published by Stevens (1966) did not include sampling in areas
upstream of the Delta (Isleton was the most upstream sampling site), although in his earlier paper
Stevens (1963) found that predation mortality by striped bass on juvenile salmon further
upstream in the Sacramento River was very high. Stevens (1963) attributed the low frequency of
occurrence of juvenile salmon in the prior diet studies of striped bass to sampling only
downstream within the Delta, rather than collecting striped bass from areas upstream within the
Sacramento River.

Striped bass diet studies conducted by Thomas (1967) did include sampling within the
Sacramento River upstream of the Delta. Thomas (1967) found that juvenile Chinook salmon
were the major diet item in 45 bass collected from the river in the reach from Rio Vista upstream
to the American River, representing a frequency of occurrence of 62%. Salmon comprised 65%
of the stomach volume of striped bass collected.

Predation on juvenile Chinook salmon by striped bass and Sacramento pikeminnow has also
been identified as a major source of juvenile salmon mortality associated with operation of the
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Red Bluff Diversion Dam located on the Sacramento River (Tucker ef al. 1998, 2003). Tucker et
al. (1998) found that juvenile salmon outweighed other food types by a three to one margin in
stomach samples of striped bass collected immediately downstream of the diversion dam.

In a striped bass predation study conducted on the lower Mokelumne River immediately
downstream of the Woodbridge Irrigation District diversion dam, Merz (2003) estimated that a
population of 200 to 500 striped bass was present in the May-June 1993 period of study with an
estimated consumption rate of 1.8 to 3.3 juvenile Chinook salmon per bass per day. Based only
on positively identified juvenile salmon in bass stomachs, it was estimated that striped bass
predation losses ranged from 11 to 28% of the 1993 Mokelumne River juvenile salmon
production. Combining the positively identified juvenile salmon with suspected salmon in the
stomach contents (e.g., partially digested prey) the predation loss estimate for this location was
estimated to be as high as 51% of the 1993 juvenile salmon outmigrants. Flows in the river
during the late spring of 1993 were low, which may have contributed to increased predation by
striped bass.

NMEFS (2009a) long-term CVP and SWP BiOp also identifies predation by striped bass in the
lower American River as a factor affecting survival of steelhead. The BiOp, citing studies
conducted by SWRI (2001), concludes that striped bass inhabit the lower American River, a
tributary to the Sacramento River, year-round and are abundant during the spring and early
summer when juvenile steelhead are rearing and emigrating from the river, concluding that
“striped bass predation on juvenile steelhead is considered to be a very important stressor to this
population” (p. 294). NMFS’s latest draft Recovery Plan for salmon and steelhead identifies
predation as a “major stressor” and calls for a significant reduction of striped bass and other non-
native predators to prevent extinction of these species (NMFS 2009b).

CDFG’s predation estimates for juvenile winter-run and spring-run Chinook salmon within the
upper Sacramento River are based on an assumed frequency of occurrence in the striped bass
diet. During the spring emigration period for juvenile Chinook, the CDFG predation estimates
assume an unreasonably low frequency of occurrence of 16.74% for age 1 and 2 striped bass
inhabiting the upper Sacramento River and 0% for ages 3 and above, which is impossibly low.
The estimates also incorrectly assume that the maximum occurrence of a juvenile salmon in a
striped bass stomach never exceeded 1 fish per day. These errors further underestimated
predation rates on salmon and steelhead. NMFS and USFWS (1996) also expressed concerns that
the level of predation mortality on winter-run Chinook salmon within the Sacramento River had
been underestimated by CDFG.

The diet data collected by Thomas (1967) and Stevens (1963) represent the best available striped
bass diet information for estimating levels of predation on listed Chinook salmon and steelhead
within the upstream reaches of the Sacramento River. The effects of striped bass predation on
listed salmon and steelhead within these upstream areas were not adequately included in the
earlier CDFG predation estimates. This major omission depressed CDFG’s predation estimates
for winter-run and spring-run Chinook salmon and steelhead, but not for delta smelt that only
occur downstream in the Delta.

The high frequency of juvenile salmon in the diet of striped bass in the spring within the
Sacramento River (Thomas 1967) is consistent with results of juvenile salmon and steelhead
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survival studies in the Sacramento River. The importance of predation mortality on juvenile
salmonids migrating downstream in the Sacramento River is highlighted by coded wire tag, and
more recently acoustic tag survival studies, which have consistently shown high levels of
mortality up river before the juvenile salmonids reach the Delta. For example, results of a recent
acoustic tag survival study conducted using late fall-run Chinook salmon (as a surrogate for
listed salmon) and steelhead showed 80% mortality for both species in 150 km of the
Sacramento River (Coleman Hatchery to Ord Bend) with an estimated 90% loss by the point that
these fish were entering the Delta (MacFarlane ez al. 2008, NMFS 2009). Of the fish released in
this test only 2% of the Chinook salmon and 7% of the juvenile steelhead were detected at the
Golden Gate. MacFarlane et al. (2008) attributed the high mortality rate to water conditions
noting “2007 was a dry year with low river flows, which may have resulted in high predation”.
The high mortality in the rivers reflected by these and other studies has important implication on
the potential success of restoration programs designed to protect and improve conditions in the
Delta. Actions are needed to reduce the high mortality rates in the river and thereby allow more
juvenile salmon and steelhead the opportunity to successfully migrate downstream into the Delta
where they would benefit further from current and future restoration actions.

Results of an experimental survival study conducted by USBR during April and May of 2009
(Bowen et al. 2009) in the lower San Joaquin River also showed high rates of predation on
juvenile salmon by striped bass. The survival study was conducted in conjunction with testing
the effectiveness of a non-physical barrier in reducing juvenile salmon migration into Old River.
A total of 947 acoustically tagged juvenile salmon were released into the river in seven groups.
The fish were then monitored several miles downstream at the Head Of Old River. DIDSON
cameras and acoustic telemetry were also used to observe the released salmon and predators in
the immediate vicinity of the non-physical barrier. Results of the study showed an average total
mortality of juvenile salmon of 68% -- including 41% mortality before they reached the barrier,
plus 27% near the barrier. The predation levels were so high that predation was found to offset
much of the deterrent benefits of the barrier, and the authors recommended the removal of the
predators. The DIDSON observations and acoustic telemetry showed that striped bass were the
dominant predator on juvenile salmon. These results indicate that predation by striped bass is a
significant source of mortality to juvenile salmon during their downstream migration and that
predation may counteract the success of programs to restore the salmon and steelhead
populations.

3.3.2 Predation Hot Spots

Under natural conditions, prey would avoid predation by use of naturally occurring cover and by
avoiding areas where the prey are confined and/or subject to high water velocities and
turbulence. During the past century, levee construction with riprap, various structures such as
water diversions, piers and pilings, bridges, and other structures have created locations where
listed fish and other aquatic species have increased vulnerability to predation by striped bass, and
other predators. Striped bass forage in open water but also aggregate in areas where prey are
concentrated or their ability to escape predation is reduced. There are an estimated 2,000
structures within the Delta that have the potential to serve as predation hot spots (Figure 4).
CDFG (1998a) describes several of the predation hot spots and results of local studies of
predation by striped bass. CDFG did not, however, account for the increased predation by
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Figure 6b. Sideview DIDSON image of predators in the vicinity of the release
pipe support structure. Source: Miranda et al., 2009.
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striped bass at these hot spots in its predation estimates, which caused an additional
underestimate of predation mortality.

Predation by striped bass has been studied at a number of Bay-Delta predation hot spots
including: (1) Clifton Court Forebay (shown in Figure 5), which is part of the SWP south Delta
export facilities (Clark et al. 2009, Gingras 1997), (2) at the release locations for fish salvaged
from the export facilities (Miranda et al. 2009), (3) near the Head of Old River on the lower San
Joaquin River (SJRGA 2007, 2008, Bowen ef al. 2009), (4) Sacramento River near the
Paintersville Bridge (Stevens 1963), (5) at the Red Bluff Diversion Dam (Tucker et al. 1998,
2003), and (6) in the vicinity of the Delta Cross Channel gates (Low ef al. 2006, Newman and
Rice 1997) . Predation by striped bass has been most extensively studied within Clifton Court
Forebay where, based on results of eight studies conducted with marked juvenile Chinook
salmon, total predation losses ranged from 63% to 99% (Gingras 1997). The range of predation
losses for juvenile Chinook salmon was similar to the predation losses estimated for yearling
steelhead averaging 245 mm in length (78% to 82%; Clark et al. 2009).

Substantial predation losses of juvenile salmon and other listed fish at the SWP and CVP fish
salvage release sites (a photograph showing the SWP release site and DIDSON camera image of
predatory fish at the site are presented in Figure 6) has also been an issue. The NMFS (2009)
Biological Opinion on long-term operations of the CVP and SWP (BiOp) reports that post
release predation rates estimated by DWR are within the range of 10 to 30% for juvenile
Chinook salmon (citing Orsi 1967, Pickard et al. 1982, and Greene 2008). Results of a more
recent study of predation losses at the SWP release site at Horseshoe Bend on Sherman Island
(Miranda et al. 2009, DFG077553 p. 158) concluded that “of the three predatory species present,
predation by striped bass has the potential to have the greatest impact on fish at the release site
based on average consumption requirements of each species”. Results of field observations
showed a marked increase in predation activity during and shortly following releases of salvaged
fish.

The prey selection and diet studies on striped bass conducted by Stevens (1966) and Thomas
(1967) that are the fundamental basis for the CDFG’s predation estimates did not account for
these locations of increased prey vulnerability to striped bass. In fact, many of the locations
where high levels of predation have been observed, such as Clifton Court Forebay and the
SWP/CVP salvage release sites, were not constructed at the time of CDFG’s striped bass diet
studies. As a result, the frequency of occurrence of various prey species in the striped bass diet
studies used by CDFG underestimates predation. Unfortunately, the data currently available to
me are not sufficient to add predation at these localized predation hot spots to the overall
predation losses of listed fish. Therefore, my estimates also underestimate predation on listed
fish.

3.3.3 Downstream Predation

The predation estimates developed by CDFG were focused primarily on the Delta, although both
striped bass and juvenile salmon and steelhead occur further downstream in San Pablo and San
Francisco Bays. Results of the diet studies conducted by Stevens (1966) did not include
comprehensive coverage of these regions of the estuary. Thomas (1967) did include results of
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diet studies in the San Pablo and San Francisco Bay regions, however the CDFG estimates of
predation were limited to the region upstream of Carquinez Straight (Dave Kohlhorst pers. com.,
PREDTION.WK4 ). Therefore the effects of additional striped bass predation on listed salmon
and steelhead within these downstream areas was not included in the CDFG predation estimates.
This source of bias would have a larger effect on the predation estimates for winter-run and
spring-run Chinook salmon and steelhead, which migrate downstream within both San Pablo and
San Francisco Bays, not for delta smelt that only occur upstream within the Delta.

3.3.4 Omission of Digested Prey and Digestion Rate

Adult striped bass in the various diet studies (Stevens 1963, 1966, Thomas 1967, Merz 2003,
Tucker et al. 1998, Nobriga and Feyrer 2008) have been collected with techniques such as hook
and line, traps, gill nets, and electrofishing. For some of these collection methods, such as gill
netting, the striped bass were held for an undetermined length of time during which they were
not foraging and any prey contained in the stomach would continue to be digested. Regardless
of the means of capture, some striped bass contain digested prey. As part of the striped bass diet
studies (Stevens 1966, Thomas 1967, Kohlhorst pers. com.), prey items that could not be
positively identified to a specific species were not included in the analysis.

A second problem is that, depending on prey species and water temperature, the digestion rate
within a bass stomach may make prey identification difficult or impossible within a relatively
short time period (e.g., 4-12 hours; Buckel and Conover 1996, Johnson et al. 1992, Elliott and
Persson 1978) after a predation event. Since only those prey that could be positively identified
were included in CDFG’s predation estimates, digestion contributed to underestimating
predation rates on the listed species. Many Chinook salmon and smelt (particularly smaller
individuals) that were preyed upon were not identified to species, and therefore predation rates
for these species were substantially underestimated. For example, the predation estimates by
striped bass on juvenile Chinook salmon in the lower Mokelumne River (Merz 2003)
approximately doubled when suspected salmon that could not be positively identified were
included in the estimate. It would have been possible to adjust the predation estimates developed
by CDFG to account for partially digested prey, as was done in the predation study reported by
Merz (2003).

The CDFG predation estimates also assume that prey are digested to an unidentified stage over a
24 hour period, but they provided no basis or justification for this assumption. The digestion rate
for small prey, such as delta smelt or fry and young-of-the-year juvenile salmon, to an
unidentifiable stage may be substantially shorter than 24 hours depending on water temperature.
. Striped bass digestion rates would increase as water temperatures increase during the spring.
Elliott and Persson (1978) discuss the importance of accurate digestion rate when estimating the
actual daily consumption of prey by predatory fish. If the average digestion rate is 12 hours, for
example, the consumption rate would be twice as large as assumed by CDFG. During the winter
when water temperatures are cold and for larger prey such as yearling or older steelhead, this
source of bias would not be expected to be as great. But CDFG made no effort to correct for
digested prey or actual digestion rates, and CDFG did not acknowledge these sources of bias in
its predation estimates.
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3.3.5 Omission of Regurgitated Prey

Striped bass often regurgitate their stomach contents during the process of being captured, held,
and handled (Johnson ez al. 1992). This caused CDFG to further underestimate predation rates
on the listed species. But CDFG made no effort to correct for regurgitated prey, and CDFG did
not acknowledge this source of bias in its predation estimates.

3.3.6 Assumed Single Frequency of Occurrence

CDFG incorrectly assumed that no matter how many prey were positively identified within the
stomach contents of a striped bass, predation had occurred on only one individual of the prey
species (Dubois 2009; Kohlhorst pers. com. 2009). Striped bass often eat multiple individuals of
a prey species, particularly in those locations where one species of prey is concentrated, such as
juvenile Chinook salmon migrating downstream in the rivers and at predation hot-spots. Figure
7a-c shows three photographs of striped bass stomach contents in which multiple salmon fry and
smolts and a large steelhead/rainbow trout were present. CDFG documented in their 2002
annual report to NMFS that an adult striped bass (420 mm) collected in May 2002 at Miller
Ferry Bridge had 39 juvenile salmonids in its stomach (DFG022703). Even when a striped bass
stomach was observed to contain more than one of a prey species (e.g., 5, 10, or more) it was
assumed in the predation calculations that only one prey had been consumed. This obvious error
by CDFG further underestimated predation.

Figure 7a.  Striped bass stomach contents. Source: Darryl Hayes at:

http://science.calwater.ca.gov/pdf/workshops/SP workshop predation Hayes 052805.

pdf
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Figure 7b. Striped bass stomach contents. Source: Darryl Hayes at:
http://science.calwater.ca.gov/pdf/workshops/SP workshop predation Hayes 052805.

pdf

Figure 7c. Striped bass stomach contents showing predation on steelhead/rainbow
trout. Source: Doug Demko, FISHBIO.
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The effect of this error is probably greatest for striped bass preying on juvenile winter-run and
spring-run Chinook salmon and steelhead within the riverine reaches of the upper and lower
Sacramento River. For example, Thomas (1967) reported that 62 juvenile Chinook salmon were
present in the stomachs of 45 striped bass sampled. Stevens (1963) observed 207 juvenile
Chinook salmon in 105 bass stomachs for an average consumption rate of 2 salmon per bass.
Based on the results from Thomas (1967), and assuming a one day digestion rate, each striped
bass inhabiting the upper Sacramento River in the spring would consume, on average, 1.4
juvenile salmon. Ifthe digestion rate was assumed to be 12 hours to an unidentifiable stage as
discussed above, each striped bass could have consumed 2.8 juvenile salmon per day. This
predation estimate is consistent with Merz’s predation rate for juvenile Chinook salmon on the
lower Mokelumne River of 1.8 to 3.3 salmon per bass per day. In the Mokelumne River study,
199 striped bass were collected in the river downstream of Woodbridge Dam with a total of 335
juvenile salmon (1.7 salmon per bass per day).

3.3.7 Prey Selection/Availability

One of the greatest sources of uncertainty in estimating more current levels of striped bass
predation on listed fish species is the absence of robust diet studies reflecting current prevalence
of both striped bass and prey species within tributary rivers and Delta. The diet study results
used by CDFG were based on surveys conducted in the early and mid-1960’s (Stevens 1966,
Thomas 1967). There have been a number of significant changes in the estuary habitats and
abundance and composition of prey since that time. For example, a number of predation hot-
spots such as Clifton Court Forebay and the release of fish salvaged from the SWP export
facilities did not exist when the early diet studies were being conducted. The adult striped bass
population has decreased in abundance, as have a number of other predator and prey species
within the estuary. These and other changes have made it difficult to extrapolate predation
estimates with confidence to current conditions. The CDFG predation estimates were developed
based on striped bass population estimates and other adjustments to the period from 1993 to
1996. In estimating the percentage of a listed fish that was preyed on by striped bass, CDFG
estimated the number of the listed species that were preyed on in a year compared to the
abundance of the listed species in that year.

Both bias in the estimate of prey consumption and estimates of prey availability significantly
affect the resulting estimate of predation mortality. For example, in estimating predation
mortality for delta smelt in 1994, CDFG estimated that 253,509 delta smelt were consumed by
striped bass over the course of one year. Based on results of four special fishery studies
conducted on June 14, July 3, July 18, and November 17, 1994, CDFG developed estimates of
delta smelt abundance for each of the surveys. Two sets of assumptions were made for the
vertical distribution of delta smelt in the water column: either (1) delta smelt only occur in the
top 6 feet of the water column where sampling with the Kodiak trawl occurred or (2) smelt
occurred uniformly throughout the entire depth of the water column. Delta smelt abundance
estimates were generated for each assumption and sampling date as shown below.
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Estimated delta smelt abundance based on Kodiak trawl sampling in 1994.

Assumes delta smelt | Assumes delta smelt
Survey Date only in top 6 feet of are uniformly Average
water distributed Abundance
throughout water
column

6/14/1994 2,079,541 7,526,823 4,803,182
7/3/1994 783,832 2,839,317 1,807,075
7/18/1994 975,773 3,605,160 2,290,467
11/17/1994 377,510 1,406,246 891,878

In developing the 1994 predation estimate for delta smelt, CDFG used the average abundance
based on the two alternative assumptions regarding the vertical distribution of the delta smelt
within the water column. To estimate the annual percentage predation mortality, the estimated
prey consumption (253,509 delta smelt) was divided by the highest average abundance estimate
(June 14, 1994) to estimate a predation rate of 5.3% ((253,509/4,803,182)*100 = 5.3%). This
calculation assumes that all of the striped bass predation occurred only in the month of June. In
reality, striped bass predation on delta smelt occurs throughout the year, since both species are
present in the Delta throughout the year. By limiting the predation calculation to only the high
delta smelt abundance estimate, the resulting estimate of predation in 1994 by striped bass was
significantly underestimated.

3.3.8 Prey Field Adjustment

To account for changes in the abundance of listed fish between the 1960°s and 1990’s, CDFG
used several techniques to develop prey adjustment factors. CDFG selected a prey field
adjustment based on a ratio of FMWT indices estimated for 1963 (back-calculated by regression
analysis since there was no FMWT survey conducted in 1963) and the mid 1990’s. To show the
importance of the prey field adjustment for delta smelt, consider that with the prey field
adjustment, the predation estimate was 253,509 (5.3%), but without the adjustment the predation
estimate was 2,272,915 (53.6%) (DFG025865).

CDFG explored three alternative methods to adjust prey field for delta smelt to reflect
differences in the abundance of delta smelt between the early 1960’s when the diet studies were
conducted and the mid-1990’s when the predation estimates were based. The first method used
the ratio of FMWT catch of delta smelt averaged between 1982 and 1992 divided by the average
for 1967 to 1981 separately for each geographic region. The second method used the average
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FMWT catch from 1967 to 1981 minus the average from 1982 to 1992 divided by 14 (the
number of years between 1973 and 1987) by geographic region. The third approach used the
ratio of the 1994 FMWT catch divided by the estimated 1963 FMWT index. Since there was no
FMWT in 1963 the estimate the 1963 index was back-calculated using a regression analysis.
Only the third method was used in the published predation estimates for delta smelt. By using
only the third method for prey field adjustment the resulting estimate of striped bass predation on
delta smelt was approximately one-half the estimate using the first or second method of
adjustment. There was no discussion or explanation by CDFG why only the third method of
adjustment was selected over alternative methods or the implication for the resulting lower
predation estimates.

3.3.9. Results

These analyses show that predation is much higher than the original CDFG predation estimates.
Unfortunately, the available data is not sufficient to quantify and correct most of these errors.

3.4  Sources of Uncertainty

In addition to the sources of error and bias in the CDFG striped bass predation estimates, there
are also sources of uncertainty. Many of the parameters used in calculating predation rates are
estimated from various fishery surveys. These parameter estimates have various levels of
uncertainty. In addition, the processes that influence the vulnerability of a listed fish to predation
vary in response to changes in environmental conditions such as river flow and turbidity, vary in
response to changes in the abundance and distribution of both predators and prey, and other
factors. The influences of some of these sources of uncertainty on the estimates of predation
mortality of the listed fish are briefly discussed below.

3.4.1 Prey Field Adjustments

Results of the striped bass diet studies are affected by the abundance of each prey species.
Changes in prey abundance affect the predation rates both at the time when the diet study was
performed and for the time period when the predation estimates are derived. Since the early
1960’s the abundance of prey species such as delta smelt has declined significantly. These
changes in prey abundance over time, and the lack of current diet study information for striped
bass from the various regions of the Delta and tributary rivers, adds uncertainty estimating
predation. Results of recent fishery surveys have shown that the delta smelt population is at
record low levels of abundance (resulting in the species being up-listed under CESA from
threatened to endangered status in 2008). At these low population levels, it would be difficult to
quantitatively detect the occurrence of delta smelt in the diet of striped bass without an extremely
large sample of striped bass, but CDFG has not published any recent extensive striped bass diet
studies.
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3.4.2 Population Estimates for Striped Bass

The predation estimates developed by CDFG are sensitive to the population abundance estimates
and geographic distribution of striped bass ages 1, 2, and 3+. Through the mark-recapture
program, CDFG is able to develop quantitative estimates of striped bass abundance for those fish
3 years and older that are represented in recaptures by the recreational fishery. Figure 8 shows
results of the adult striped bass abundance estimates. Results of the mark-recapture abundance
estimates over the period from 2000 through 2007 (DFG084398) have averaged 1.47 million
adult striped bass (ages 3+) and 1.08 million legal striped bass (18 inches and larger). Because
the population estimates are based on tag returns from anglers, the most recent years have a great
degree of uncertainty (provisional and subject to change as more tags are returned over time)
than estimates from several years ago that include more time for recapture in the recreational
fishery. The greater the number of tagged fish that are recaptured the greater the accuracy of the
abundance estimates.
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Figure 8.

Estimated abundance of adult striped bass, 1969-2005. The official estimate
is shown as black squares; the 95% confidence interval is shown as dashes
connected by lines when estimates were made in consecutive years. Source:
CDFG - Nobriga 2009.
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Striped bass ages 1 and 2, are not part of the population that is harvested legally by anglers
(minimum legal size is 18 inches) and, therefore there are no quantitative estimates of abundance
or distribution of these subadult bass. Results of the diet studies (Stevens 1966, Thomas 1967)
showed that subadult striped bass are actively preying on juvenile Chinook salmon and delta
smelt. To include estimates of predation by subadult striped bass, CDFG back-calculated age
specific abundance by assuming a constant survival rate of 25% for survival from age 1 to age 2
and a 40% survival rate from age 2 to age 3. Using the abundance estimate for age 3 striped
bass, estimates were then developed for ages 1 and 2. CDFG provided no analysis of the method
used to estimate age-specific survival rates, how these rates vary among years or other bases for
the subadult abundance estimates.

To illustrate importance of the estimates of age specific abundance of predatory striped bass, |
have used CDFG data to estimate striped bass abundance by age class. The population estimates
for striped bass in 1992 were:

Age 1 4,801,360
Age 2 860,835
Age 3 and older 1,040,775
Total (ages 1+) 6,702,970

Based on these estimates the total population of striped bass that were potentially preying on
listed fish was 6,702,970 striped bass, with the majority (84%) being subadult fish whose
abundance was estimated based on the assumed survival rates. These abundance estimates may
under or over estimate the actual abundance of predators inhabiting the estuary at any given time,
which also directly affects the estimated level of predation on each of the listed fish.

In addition to the estimates of age 1 and 2 striped bass abundance, the CDFG predation
calculations also assumed a geographic and seasonal distribution for the occurrence of these sub-
adult striped bass within the estuary. The actual geographic distribution was unknown.

3.4.3 Listed Species Abundance

The trend in abundance of winter-run Chinook salmon, as reflected in spawning adults, is shown
in Figure 9. Winter-run adult abundance declined substantially during the 1970’s and 1980’s
reaching the lowest level in the early 1990’s. Beginning in the late 1990’s and continuing
through 2006 adult winter-run salmon showed an increasing trend. Adult abundance declined in
2007 and 2008, which is thought to be a response to poor ocean rearing conditions for juvenile
salmon in recent years (NMFS 2009a).

27



60000

50000 -

40000 -

30000 -

Abundance

20000 -

10000 -

He ﬁmﬂﬂﬂﬂﬂﬁl o mmﬁﬂﬂ@HHHHHHﬂﬂ

1970 1980 1990 2000 2010

Year

Figure 9. Annual adult winter-run salmon returns to the Sacramento River.
Source: CDFG GranTab and NMFS 2009a.
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Figure 10. Annual adult spring-run salmon returns to the Sacramento River
system. Source: CDFG GranTab.
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Figure 11. Annual estimates of delta smelt abundance in the FMWT. Source: CDFG Bay-Delta website.
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The trend in abundance of spring-run Chinook salmon, as reflected in spawning adults, is shown
in Figure 10. Spring-run adult abundance has been characterized by relatively high variability
with periodic strong year classes followed by weak year classes. Adult spring-run salmon was
lowest during the 1990°s followed by an increase in abundance between 1999 and 2006. Unlike
winter-run salmon, spring-run adult abundance did not show a marked decline in 2007 or 2008.

No comprehensive estimates are available for Central Valley steelhead. Limited data are
available on juvenile steelhead collected in various fishery surveys and on adult steelhead
returning to the upper Sacramento River based on counts at the Red Bluff Diversion Dam fish
ladder. Over the past decade the Red Bluff Diversion Dam gates have been kept open for a more
of the year, which has reduced the reliability of fish ladder counts.

The trends in abundance of delta smelt are reflected in results of the Fall Midwater Trawl
(FMWT) collections made each year in September-December. Results of the FMWT surveys
from 1967 through 2008 are shown in Figure 11. Delta smelt abundance fluctuated substantially
among years. Although delta smelt abundance reached low levels in some years (e.g., 1992,
1994, 1996) the abundance recovered in subsequent years. Beginning in 2002 the delta smelt
abundance has remained at low levels, with the lowest indices of abundance on record occurring
during 2005-2008. These record low levels of abundance for delta smelt, and other pelagic
organisms, reflect the Pelagic Organism Decline (POD).

4. REVISED ESTIMATES OF STRIPED BASS PREDATION ON LISTED FISH

In the following section I analyze predation mortality by striped bass on winter-run Chinook
salmon, spring-run Chinook salmon, Central Valley steelhead, and delta smelt. I begin with the
analytic framework developed by the earlier CDFG predation estimates with revised or corrected
assumptions based on the best available scientific data and our current understanding of striped
bass and the listed fish inhabiting the Bay-Delta system.

4.1 Winter-run Chinook salmon

Winter-run Chinook salmon spawn and juveniles rear in the mainstem Sacramento River. The
primary spawning area is located on the Sacramento River between Redding and Red Bluff.
Juvenile winter-run salmon also rear further downstream in the mainstem Sacramento River.
Juvenile winter-run Chinook salmon migrate downstream from their rearing habitat during the
late winter and spring months through the mainstem Sacramento River and Delta to enter the
coastal marine waters. During their downstream migration these juvenile salmon are vulnerable
to predation by striped bass and other predatory fish including pikeminnow in the river and
largemouth bass within the Delta (Nobriga and Feyrer 2007). CDFG developed estimates of
predation mortality on juvenile winter-run Chinook salmon based on data available for 1993-
1996. CDFG assumed that the frequency of occurrence of winter-run salmon in the diet of
striped bass in the lower reaches of the Sacramento River would be 1.2% in the fall, 16.74% in
spring, and 2.24% in summer for striped bass age 1 and 2, and that striped bass ages 3+ would
not forage at all on juvenile winter-run salmon in the Sacramento River during the fall, winter, or
spring, and that the frequency of occurrence in summer would be 2.24%. The basis for these
assumptions was not presented in the 1998 draft or final CDFG EIR or incidental take
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application. The CDFG predation estimates also incorrectly assumed that the consumption rate
of juvenile salmon would never exceed 1 salmon per bass.

Based on these assumptions CDFG estimated that striped bass predation (assuming a 1994
striped bass abundance of 712,000 adults) on juvenile winter-run Chinook salmon averaged
5.6%. CDFQG estimated a predation rate separately for each of the four years included in the
analysis that ranged from 0.9% (1993) to 16% (1995) reflecting differences among years in the
timing of winter-run outmigration and changes in striped bass abundance and distribution
(PREDTION.WK4). With a striped bass population abundance of 1.1 million fish, which is
similar to the current population estimates (Section 3.2), the predation on winter-run Chinook
salmon estimated by CDFG was 8.7%.

As discussed above, CDFG assumptions of the frequency of occurrence of juvenile salmon in the
striped bass diet within the river reaches of the Sacramento River are substantially lower than the
results of the two diet studies within the river. Stevens (1963) identified substantially higher
predation rates for juvenile salmon by striped bass in the Sacramento River between Rio Vista
and Freeport (discussed above). Thomas (1967) also collected striped bass from the Sacramento
River upstream of Rio Vista into the lower American River during the spring. Thomas (1967)
reported that juvenile salmon had a frequency of occurrence of 62% in the striped bass (n=45)
sampled and represented the dominant prey (65% of the striped bass diet by volume). Results of
a striped bass diet study conducted on the Mokelumne River (Merz 2003) showed that 335
juvenile salmon were eaten by 199 striped bass representing an average consumption rate of 1.7
salmon per bass during the spring. Stevens (1963) reported a juvenile salmon consumption of
207 salmon present in 119 striped bass stomachs containing prey representing an average
consumption rate in the lower Sacramento River during June of 1.7 salmon per bass. For
purposes of reanalyzing juvenile winter-run Chinook salmon predation rates, based on these diet
studies, [ used a frequency of occurrence of 62% for striped bass ages 1+ and an average
consumption rate of 1.5 salmon per bass. I based my estimate of the number of juvenile salmon
eaten (1.5 salmon per bass) on the prey consumption rates reported by Stevens 1963; 2 salmon
per bass), Thomas (1967; 1.4 salmon per bass), and Merz (2003; 1.7 salmon per bass)

Juvenile winter-run Chinook salmon migrate downstream in the Sacramento River during the
winter and early spring months. Although striped bass are present in the river during the winter
months, the available diet studies do not provide data on the frequency of occurrence of juvenile
salmon in the striped bass diet in the winter. Results of acoustic and coded wire tagging studies,
however, have shown high mortality of juvenile salmonids within the river during the winter
months. Since there are no diet study data on striped bass within the upper river during the
winter, | cannot estimate the contribution of striped bass predation to the total mortality, but the
omission of winter predation would result in an underestimation of predation on juvenile winter-
run Chinook salmon.

In Section 3.2, I discuss a number of factors that contributed to underestimating striped bass
predation mortality on juvenile winter-run Chinook salmon. For most of the errors and sources
of bias in developing predation estimates, the available data are insufficient to quantitatively
revise the predation estimates to account for the sources of bias. As a consequence of the lack of
data to correct many of these sources of bias, the estimates that I present below also
underestimate predation rates on listed fish. I have revised the predation estimates to correct
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those two sources of bias where sufficient data exist. The results of my re-analysis of winter-run
predation in 1993-1996, assuming the same seasonal distribution of winter-run Chinook salmon
migration as CDFG, are shown below:

Striped bass predation on juvenile winter-run Chinook salmon.

Adult Striped | CDFG Original Estimates | Corrected for Frequency of
Bass (ages 3+) Occurrence in the Upper
Abundance Sacramento River (62% in
Spring) and Number of Prey
(1.5 fish) per Striped Bass
Number Number
Winter-run .
. Winter-run
Analysis Salmon
Salmon Lost
Year Lost to Percentage . Percentage
) to Striped
Striped
Bass
Bass Predation
Predation
1993 1,040,775 2,564 0.9 2,564 0.9
1994 776,333 2,493 2.8 10,655 11.8
1995 1,192,247 11,887 16.0 49,459 66.4
1996 1,003,000 3,837 1.0 13,256 33
Average 1,003,089 5,195 5.2 18,984 20.6

CDFG provided no confidence intervals for their predation estimates. For the reasons discussed
in Section 3, there is high uncertainty in estimating striped bass predation rates. Since CDFG
does not provide confidence intervals for the parameters used in the estimates, I have not been
able to estimate confidence intervals for these estimates. But I am confident that my estimates
are more accurate, since I corrected two of the errors in the CDFG estimates, and the other errors
led CDFG to further underestimate predation.

Results of these analyses show that the risk of predation mortality by striped bass, particularly in
the mid- and upper reaches of the Sacramento River, is substantially greater than indicated by the
published CDFG predation estimates. While this corrected average predation rate of 20.6% is
substantially higher than CDFG’s published predation estimates for winter-run Chinook salmon
(4 to 9%)) it 1s lower than CDFG’s unpublished bioenergetics based analysis that generated an
average predation rate estimate of 30% for winter-run salmon (see Section 3.2.2).
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Analyses of striped bass predation have assumed that predation varies in direct proportion to the
abundance of striped bass (CDFG 1998a,b, Lindley and Mohr 2003). In the predation
calculation presented here I have also assumed that predation on listed fish varies directly in
response to striped bass abundance. Results of my analyses, using the same analytic framework
and basic assumptions as CDFG and assuming an adult striped bass population of approximately
1 million fish, with the exception of corrections for upstream frequency of occurrence in the
striped bass diet and average number of prey per bass, was approximately 21%. As discussed in
Section 3.2, CDFG incorrectly assumed much lower estimates of salmon in the diet of striped
bass within the Sacramento River, assumed that striped bass would never prey on more than one
salmon per day, omitted predation on juvenile salmon migrating during the winter, and the
effects of digestion and regurgitation of prey. Had CDFG predation rate estimates taken into
account these factors, their predation estimate would be substantially greater than the 5.6%-8.7%
reported by CDFG.

These estimates are consistent with the findings discussed in Section 3.3.1 that juvenile salmon
represent the major prey for striped bass within the river during the spring and early summer.
These results are also consistent with the findings of prior coded wire tag studies, and more
recent results of acoustic tagging experiments, that consistently show high levels of mortality
(80-90%) for juvenile salmon migrating downstream in the Sacramento River. Only 2% of the
juvenile Chinook salmon and 7% of the juvenile steelhead released up river were detected
migrating through the Golden Gate (McFarlane ef al. 2008). Results of similar acoustic tag
survival studies conducted using late fall-run Chinook salmon during the winter in 2007 and
2008 found survival rates for fish released into the Sacramento River near Sacramento, and
migrating downstream through the Delta, to range from less than 10% survival to approximately
60% survival depending on migration route (Perry and Skalski 2008, 2009). Bowen et al. (2009)
also reported high levels (68% loss) mortality to juvenile salmon in only a short section of the
lower San Joaquin River during the spring. Field observations by Bowen et al. (2009)
documented that predation by striped bass was a major source of salmon mortality (see Section
3.3.1). These and other acoustic tag studies support the finding that predation by striped bass in
the Sacramento River represents a major source of mortality to migrating juvenile winter-run
Chinook salmon.

The higher predation estimates of CDFG’s unpublished bioenergetics analysis and this report
have major implications for the survival and management of this endangered species. NMFS
identified an allowable level of take of juvenile winter-run Chinook salmon as a result of direct
export losses (as measured through salvage of juvenile salmon at the SWP and CVP export
facilities) to be 1% of the estimated number of juvenile winter-run salmon migrating through the
Sacramento River as a warning level (yellow light) and a 2% take would trigger reconsultation
and major changes to SWP and CVP export operations (red light). NMFS now recommends a
significant reduction of striped bass and other non-native predators to prevent extinction of
salmon and steelhead (NMFS 2009Db).

Lindley and Holsinger (1996), and subsequently Lindley and Mohr (2003), prepared analyses of
the effect of striped bass predation mortality on winter-run Chinook salmon as part of the NMFS
review of the CDFG proposed striped bass management plan. A statistical model was developed
to estimate the effects of managing the adult striped bass population at levels of 512,000 fish,
700,000 fish, and 3 million fish. The model was then used to estimate the change in the
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probability of winter-run Chinook salmon recovery, and the probability of winter-run salmon
extinction. The model assumed the low predation rates developed by CDFG. The model was
used to estimate recovery and extinction probability based on assumptions of density dependant
and density independent survival. I only discuss results of the density dependant model below
since, in my opinion, it best reflects conditions in the upper river. The density dependant model
predicted a 23% extinction risk if no striped bass were present in the estuary, which increased to
28% at a striped bass population of 512,000 adults, to 30% at a striped bass population of
700,000 fish and to 55% if the striped bass population increased to 3 million fish. The model
predicted that the probability of winter-run salmon recovery was approximately 14% with no
striped bass predation, which decreased to 11% at a striped bass population of 512,000 adults, to
10% at a striped bass population of 700,000 adults, and to 4% at a striped bass population of 3
million adults. These results show that, even using the CDFG low predation estimates: (1)
striped bass predation increases the risk of extinction and reduces the probability of recovery
when the striped bass population abundance increases, (2) a reduction in striped bass contributes
to a reduction in the risk of extinction, and (3) if higher corrected predation rates on juvenile
winter-run Chinook salmon (approximately 20% based on my estimates to 30% based on
CDFG’s bioenergetic estimates) were introduced into the model, the incremental risk of
extinction attributable to predation would greatly increase.

4.2  Spring-run Chinook Salmon

Spring-run Chinook salmon spawn and rear in major tributaries to the Sacramento River such as
Mill, Butte, Clear, and Deer Creeks, the Feather River, and the mainstem Sacramento River.
Juvenile spring-run Chinook salmon migrate downstream from their rearing habitat during the
late winter and spring months through the mainstem Sacramento River and Delta to enter the
coastal marine waters. During their downstream migration these juvenile salmon are vulnerable
to predation by striped bass and other predatory fish including pikeminnow in the river and
largemouth bass in the Delta (Nobriga and Feyrer 2007). CDFG developed estimates of
predation mortality on juvenile spring-run Chinook salmon based on data available for 1993-
1994. CDFG assumed that the frequency of occurrence of spring-run salmon in the diet of
striped bass in the upper reaches of the Sacramento River would be 1.2% in the fall, 16.74% in
spring, and 2.24% in summer for striped bass ages 1 and 2, and that striped bass ages 3+ would
not forage at all on spring-run salmon in the Sacramento River during the fall, winter, or spring,
and that the frequency of occurrence in summer would be 2.24%. CDFG also incorrectly
assumed that striped bass consumed 0 spring-run Chinook salmon in the winter. The basis for
these assumptions was not supported by CDFG in the 1998 draft or final EIR or incidental take
application. The CDFG predation estimates also assumed incorrectly that the consumption rate
of juvenile salmon would never exceed 1 salmon per bass. Assuming an adult striped bass
population abundance of 712,000 fish, CDFG estimated the predation loss in 1994 to be 3.2%.
The predation estimates assuming an adult striped bass population abundance of 1.1 million
striped bass was 4.9% (CDFG 1998 a, b).

As discussed in Section 4.1, the assumptions of the frequency of occurrence of juvenile salmon
in the striped bass diet within the river reaches of the Sacramento River used in the CDFG
estimates are substantially lower than the results of the diet studies of predation within the river.
For purposes of reanalyzing juvenile spring-run Chinook salmon predation rates, I assumed a
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frequency of occurrence of 62% for striped bass ages 1+ and an average consumption rate of 1.5
salmon per bass.

The results of my re-analysis of spring-run predation in 1994 are shown below:

Striped bass predation on juvenile spring-run Chinook salmon.

Adult Striped Corrected for Frequency of
Bass (ages 3+) . . Occurrence in the Upper
Abundance CDE‘SGﬁn(Z;E;nal Sacramento River (62% in
Spring) and Number of Prey
(1.5 fish) per Striped Bass
: Number Number
Analysis . .
Spring-run | Percentage Spring-run Percentage
Year
Salmon Salmon
1994 1,003,000 45,806 6.6 292,045 2.3

DThis unpublished estimate is 1.7% higher than the published predation estimate by CDFG. I
was unable to determine from the available records why the differences exist.

Based on results of these analyses it is my opinion that the risk of predation mortality by striped
bass, particularly in the upper reaches of the Sacramento River during the late winter and spring
period of juvenile outmigration, is substantially greater than indicated by the earlier CDFG
predation estimates. Results of my analyses, using the same analytic framework and basic
assumptions as CDFG and assuming a striped bass population of approximately 1 million adults,
with the exception of corrections for upstream frequency of occurrence in the striped bass diet
and average number of prey per bass, was approximately 42%.

As discussed in Section 4.1, NMFS identified an allowable level of take of juvenile spring-run
Chinook salmon as a result of direct export losses to be 1% as a warning level (yellow light) and
a 2% take would trigger reconsultation and major changes to SWP and CVP export operations
(red light).

As discussed in Section 4.1, these results are consistent with the diet study findings that juvenile
salmon represent the major prey resource for striped bass within the river during the spring and
early summer. These results are also consistent with the findings of survival studies that
consistently show high levels of mortality for juvenile salmon migrating downstream in the
Sacramento River. MacFarlane ef al. (2008) reported that only 2% of the juvenile Chinook
salmon and 7% of the juvenile steelhead released in these studies were detected migrating
through the Golden Gate.. These and other survival studies have shown low survival for
juvenile Chinook salmon migrating downstream through the Sacramento River and Delta that are
consistent with the finding of my analysis that predation by striped bass in the Sacramento River
represents a substantial, and is probably the largest source of mortality for juvenile spring-run
Chinook salmon.
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4.3  Central Valley Steelhead

Prior striped bass diet studies have not identified steelhead as an element in the diet of striped
bass (Stevens 1963, 1966, Thomas 1967, Nobriga and Feyrer 2008). To my knowledge, the
results of the Clifton Court Forebay survival studies (Clark ez al. 2009) are the first to
quantitatively estimate predation mortality on juvenile steelhead within the Delta. Several
factors may contribute to the absence of steelhead in these prior studies. Juvenile steelhead
migrate downstream at age 1 or 2, and the juveniles are substantially larger than juvenile
migrating salmon and therefore may be less vulnerable to predation by smaller subadult striped
bass. Larger juvenile steelhead also have greater swimming ability to avoid predation. Also, the
prior diet studies focused on predation within the Delta and did not sample striped bass
extensively from the upstream rivers where the predation risk to steelhead would be higher.
Results of a predation study conducted using juvenile steelhead within Clifton Court Forebay
(Clark et al. 2009) clearly demonstrated that juvenile steelhead are preyed on by striped bass.
Predation within the forebay on steelhead (referred to as pre-screen mortality) was estimated
using acoustic tags placed on both juvenile steelhead released into the forebay as well as adult
striped bass collected from within the forebay, as well as from juvenile steelhead tagged using
PIT tags. Results of this study estimated that losses of juvenile steelhead were 78% (CI +/- 4%)).
The loss estimate for juvenile steelhead was similar to the results of previous studies using
juvenile Chinook salmon that also showed losses in excess of 80% (Gingras 1997).

Based on the seasonal timing of juvenile steelhead emigration, their similarities to juvenile
Chinook salmon (particularly those that migrate downstream as yearlings ), the results of the
Clifton Court Forebay predation study, and results of acoustic tag survival studies conducted on
the Sacramento River using juvenile steelhead that showed greater than 80% mortality in a 150
km reach of the river and 93% loss before pass the Golden Gate (MacFarlane ez al. 2008), it is
my opinion that predation by striped bass on steelhead would be below the range described for
spring-run and winter-run Chinook salmon. A striped bass would only consume one steelhead
because of their larger size, consequently. Larger juvenile steelhead are probably only eaten by
large striped bass (age 3+). The predation rate on juvenile steelhead would be expected to be
reduced to approximately 7 to 15%.

There is a high degree of uncertainty in estimating the predation rate on juvenile steelhead based
on the lack of data regarding the contribution of steelhead to the diet of striped bass within the
Sacramento River. Although the sample size of acoustic tagged steelhead (n=200) released in
the survival study conducted by MacFarlane et al. (2008) is small, the high mortality rate for
juvenile steelhead within the Sacramento River indicates that predation mortality on juvenile
steelhead, like other salmonids, is a larger factor than previously thought.

4.4 Delta Smelt

CDFQG estimated predation on delta smelt based on information available for the period 1993 and
1994. The predation estimates included in the CDFG PREDTION.WK4 spreadsheets for delta
smelt included annual predation losses of 2,862,594 and 3,387,591, which were subsequently
adjusted by CDFG using various changes to striped bass abundance and geographic distribution
to estimate a delta smelt predation loss of 253,509 (approximately one order of magnitude lower
than the original estimates) in 1994. The predation loss estimate reported by CDFG in the 1998
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draft and final EIR and incidental take permit application for delta smelt in 1994 was 253,509
fish, representing a percentage loss of 5.3% (based on the highest level of delta smelt abundance
(June) estimated for the year) which I discuss in Section 3.2.

The estimate of predation mortality on delta smelt developed by CDFG in 1994 (5.3%)

underestimated the actual predation rate based on a number of factors discussed in Section 3.2.
For example, delta smelt are a small fish that would be rapidly digested to a point where it would
not have been positively identified, and therefore not included in CDFG’s estimates for
predation. Further, as discussed in Section 3.2, CDFG used the highest estimated population
abundance estimate (June 14, 1994) when delta smelt are in the early juvenile lifestage and more
abundant than during the remainder of the year. Had the predation rate estimate taken into
account that delta smelt live their entire life in the Delta and are vulnerable to striped bass
predation year-round, the predation rate estimate would be substantially greater than the 5.3%
reported by CDFG as discussed below.

Assuming that striped bass predation occurs on juvenile, subadult, and adult delta smelt (e.g.,
assuming that striped bass do not prey extensively on larval smelt) and using the average
abundance estimates from CDFG presented above, the abundance of delta smelt by season can
be estimated. I assumed that the average of the June and July estimates would represent delta
smelt abundance in the spring and summer and that the November estimate would reflect delta
smelt abundance in the fall and winter. I then used the seasonal distribution in delta smelt
consumption by striped bass developed by D. Kohlhorst (presented in the PREDTION.XLS
spreadsheet). The corrected results are presented below:

Percentage delta Estimated Estimated Percentage
. smelt number of delta smelt predation
Seasonal period consumption delta smelt abundance | mortality on
consumed delta smelt
(assuming a
total of 253,509
from CDFG)
Spring-Summer 19% 48,167 2,966,908 1.6%
Fall-Winter 81% 205,342 891,878 23.0%
Average 13.1%

These calculations, which have been based on CDFG consumption and abundance estimates,
show that predation mortality may have a substantially greater effect on subadult and adult delta
smelt during the fall and winter, when the population abundance is lower, and prior to spawning,
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when compared to the lower estimates of predation losses during the spring and summer on the
more abundant juvenile delta smelt. In terms of the risk of extinction resulting from striped bass
predation mortality, predation on pre-spawning adult delta smelt would have a substantially
greater population effect than predation on juvenile smelt. The predation estimates developed
and presented by CDFG used an overall annual average which does not take into account the
natural survival of delta smelt or the increased value of the loss of a pre-spawning adult to the
reproduction and population dynamics of the species.

Since the earlier CDFG predation loss estimates were made, the delta smelt population
abundance, as reflected in the CDFG FMWT surveys, has declined significantly, probably due to
striped bass predation and many other stressors. Delta smelt abundance indices in recent years
have been the lowest recorded. As a result of this decline in delta smelt abundance, delta smelt
have been included in the Pelagic Organism Decline (POD) and have recently been reclassified
under the California Endangered Species Act (CESA) from threatened to endangered status.
Results of a recent striped bass diet study (Nobriga and Feyrer 2008), although having a small
sample size of striped bass, did not detect delta smelt in striped bass stomachs sampled. These
results are consistent with a finding that delta smelt are currently at such low abundance in the
Delta that results of such small fishery surveys are not sensitive enough to confidently detect
occurrence at the current low densities.

On the other hand, observations on the diet of approximately 70-100 striped bass collected by
hook and line on the lower Mokelumne River in the vicinity of Willow Berm Marina between
2000 and 2004 showed that at least two delta smelt had been consumed (J. Merz, pers. com.).
The stomach contents from these striped bass are available but have not been processed. If the
frequency of occurrence of delta smelt in the diet of these striped bass had been extrapolated to
the entire Delta, the resulting predation rate by striped bass would have been very high. Because
of the limited geographic distribution and small sample size it is not appropriate to extrapolate
these results to the Delta or to the entire delta smelt population. These results do, however, show
that predation by striped bass on delta smelt may currently be higher than reflected in the diet
study by Nobriga and Feyrer (2008).

These results are consistent with a finding that delta smelt are currently at such low abundance in
the Delta that results of such small fishery surveys are not sensitive enough to confidently detect
occurrence at the current low densities. Based on the current low abundance of delta smelt
inhabiting the Delta, it is my opinion that quantitative extrapolation of predation rates based on
striped bass diet studies conducted in the early 1960’s, and the relatively low sample size of
striped bass collected by Nobriga and Feyrer (2008), would not provide reliable estimates of
current delta smelt predation losses. It is possible that as the delta smelt population abundance
has declined in recent years, predation by striped bass has declined, with the striped bass
switching to more abundant alternative prey species. However, at the current low abundance of
delta smelt, any incremental mortality would have adverse population impacts to delta smelt and
increase their risk of extinction.

As discussed in the POD investigations (Baxter et al. 2008, Loboschefsky ez al. 2009, and
others), the Bay-Delta ecosystem, and many of the aquatic species, have declined. There are a
variety of stressors and factors that have contributed to these conditions. Predation by striped
bass has been identified as one factor that has contributed to the observed declines (Baxter ef al.

38



2008). When an ecosystem or species is healthy and robust, it is better able to withstand the
effects of various sources of mortality, including predation. When the species is stressed and its
health and abundance are depressed, the species is more vulnerable to the adverse effects of
stressors, such as predation mortality (Lindley ez al. 2007, NMFS 2009a).

Larval and juvenile striped bass forage on zooplankton, which also represents the food supply for
larval, juvenile, and adult delta smelt (Bennett 2005). There has been evidence that zooplankton
densities within the Delta have declined in recent years and that limited food resources may be
an important factor affecting the health and abundance of delta smelt (Baxter ez al. 2008).
Foraging by larval and early juvenile striped bass contributes to an incremental reduction in
zooplankton within the Delta during the spring and early summer, but I do not believe that
competition between delta smelt and young striped bass for food resources is a major factor
controlling delta smelt abundance.

In my opinion, the current level of predation mortality by striped bass is probably not the
primary stressor to delta smelt. Delta smelt inhabit the Delta year-round, but are distributed over
relatively large areas, particularly within Suisun Bay, and appear to preferentially associate with
higher turbidity waters that would likely reduce the risk of detection by predators. Striped bass
predation on the current population of delta smelt is probably less than 5%. But even a small
amount of predation may increase the already high risk of delta smelt extinction and reduce the
probability of delta smelt recovery.

S. CONCLUSION: BENEFITS OF REDUCED BASS PREDATION

The extinction probability model developed by Lindley and Mohr (2003) shows that a reduction
in the striped bass population would increase the probability of survival of winter-run Chinook
salmon, especially if the modeling assumed higher striped bass predation. In contrast, it has been
argued (Nobriga 2009) that a reduction in striped bass abundance and predation may not
appreciably benefit listed fish, because some other predators would increase in abundance and
increase their predation on the listed species. Within the lower Delta, a reduction in striped bass
abundance could increase the abundance of other predatory fish such as largemouth bass or
inland silversides that prey on delta smelt. Predicting the biological response to a reduction in
striped bass abundance in the lower Delta is complex because of the numbers of predatory fish
and their interactions.

Within the upper most Sacramento River upstream of the Red Bluff Diversion Dam, resident
trout/steelhead are the most abundant predator on salmonids — primarily feeding on eggs and
rearing juveniles. But predatory trout and steelhead are limited to only the upper most reach
where seasonal water temperatures remain cold (NMFS 2009a). As the juvenile salmon and
steelhead migrate downstream within most of the length of the Sacramento River, however, there
are only two dominant predator species, which prey on juvenile salmonids: striped bass and
Sacramento pikeminnow. These two species have different life histories, habitat preferences,
and geographic distributions. Pikeminnow live their entire life in the upstream freshwater
reaches of the river, while striped bass predominantly migrate upstream from the brackish and
marine regions of the estuary into the river during the late winter and spring when juvenile
salmon are numerous and migrating downstream. There is no evidence to suggest that striped
bass predation controls pikeminnow population abundance, in part, because of the geographic
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and temporal separation between the two species. Further, pikeminnow are a native species that
has co-evolved with Chinook salmon, and juvenile Chinook salmon is not a key component in
the pikeminnow diet during most of the year (Tucker ef al. 1998). In addition, adult striped bass
are larger than pikeminnow and can consume larger prey such as yearling and older salmonids
(see Figure 7c), and the striped bass population has a substantially greater biomass that consumes
a greater biomass of prey. Pikeminnow inhabiting the Sacramento River use the juvenile
salmonids as a prey resource during the emigration period, but the abundance of pikeminnow is
limited by prey availability during those periods of the year when juvenile salmonids are not
available as prey. Consequently, the pikeminnow cannot substantially increase their population
abundance, even if the striped bass population decreased due to deregulation. In summary, a
reduction in striped bass abundance and predation should result in a similar reduction in total
mortality to juvenile winter-run Chinook salmon, spring-run Chinook salmon, and Central
Valley steelhead.

Bennett (2009) demonstrates that elimination of the striped bass fishing regulations would result
in a 60-70% reduction in the overall abundance of striped bass inhabiting the Bay-Delta. For
simplicity I assume that deregulation would reduce bass abundance by 65%. This is consistent
with prior conclusions of CDFG. Delisle and Stevens (1993) concluded that deregulation of the
striped bass fishery would substantially reduce large striped bass and decimate the fishery in the
Sacramento River spawning areas. Since almost all striped bass predation on salmonids occurs
in the upriver areas, decimating the population of adult striped bass inhabiting the upper
Sacramento River could almost eliminate all striped bass predation on salmonids, not only 65%
of it. The previous analyses conducted by CDFG as part of the 1998 draft and final EIR and
incidental take permit application, as well as the extinction and recovery model developed by
Lindley and Mohr (2003), assume that striped bass predation mortality on listed fish will change
in direct proportion to striped bass abundance. Assuming only a proportional reduction in
predation mortality, a 65% reduction in striped bass abundance would result in the following
approximate reductions in predation mortality of the three listed salmonid species, based on my
predation estimates in Section 4:

(1) Winter-run salmon - from 21% to 7% - a benefit of 14%;
(2) Spring-run salmon - from 42% to 15% - a benefit of 27%;
3) Central Valley steelhead - from 7-15% to 2-5% - a benefit of 5 to 10%.

Had I been able to correct for the other errors and omissions in the CDFG predation calculations,
the expected benefits would be greater.

A reduction in striped bass abundance on the order of 60-70% would, in my opinion, contribute
to a proportional reduction in the total mortality of juvenile winter-run and spring-run Chinook
salmon and Central Valley steelhead. Although a variety of factors affect the survival of
emigrating juvenile salmonids within the river and Delta, losses as a result of striped bass
predation, are in my opinion, a major factor, if not the dominant factor, affecting survival of
migrating juvenile salmonids. Reducing striped bass predation mortality on listed salmonids
would substantially reduce the risk of their extinction and increase the probability of recovery of
these species.
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In contrast, at the current low population level of delta smelt, their broad geographic distribution
within the more turbid areas of the Delta, and the abundance of other predators on delta smelt
inhabiting the Delta, I would expect that a reduction in the striped bass population would not
significantly reduce predation mortality on delta smelt. However, at the low population level of
delta smelt, even a small increase in survival resulting from a reduction in predation mortality
would be important to avoiding extinction and contributing to the probability of recovery.

Striped bass and Chinook salmon, steelhead, and delta smelt have co-existed within the Bay-
Delta system for over a century. Predators and their prey typically establish a dynamic
equilibrium in abundance. As long as the ecosystem is healthy and the prey populations are
robust, predation mortality becomes one of the factors affecting population dynamics of the prey
species. But, when multiple stressors reduce the health, fitness, survival, and abundance of the
prey, and damage the ecosystem, the prey populations decline (NMFS 2009a). Within the Bay-
Delta there is no doubt that prey populations such as delta smelt, salmon, steelhead, and other
species have suffered the effects of a variety of stressors. Land use changes, contaminants,
invasive species, predation, water project operations, changes in aquatic habitat quality and
availability, depleted food supplies, and other stressors have damaged the ecosystem. Stressors
such as predation mortality increase in importance when the health of the species and the
ecosystem is degraded.

Predation by striped bass is not the sole cause of the declines in listed fish, but it may be the
largest cause of mortality to salmon and steelhead. NMFS now recommends a significant
reduction of striped bass and other non-native predators to prevent extinction of the salmon and
steelhead (NMFS 2009b). Reducing striped bass abundance through deregulation would
substantially reduce predation mortality and benefit the populations of winter-run and spring-run
Chinook salmon and steelhead. Allowing fishermen to reduce striped bass predation via
deregulation is probably the most efficient and cost-effective method to contribute to recovery of
Central Valley salmon and steelhead. Unless this is done, expensive management programs
designed to improve their survival within the lower Delta are unlikely to save these listed
species.

4. SUPPLEMENTAL OPINIONS

I am informed that CDFG document production and discovery are continuing. Consequently, I
may supplement or modify my opinions, and I may respond to the opinions of others in this case.

5. COMPENSATION

My compensation for all work in this case is $180.00 per hour.
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7. INFORMATION CONSIDERED

A DVD containing additional information that I considered in developing the opinions expressed
above is included with this expert report.
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Exhibit 2. Prior research on striped bass predation on listed fish species.

Striped Bass Predation on Listed Species — Prior Research

Authors and Year Title Key Findings
Affiliation
Clark (DWR) 2009 | Quantification This is the first study in the Delta to quantify
Bowen (USBR) Oof Pre-Screen. and d?cument predation on juvenile s.tee.lhead
Mayfield Loss Of Juvenile by.strlped bass. The study area was limited to
(CDFG) Zehfuss St(.aelhead In CllftOIl. Court Fm:ebay. .Estln.lated that
(CDFG) Taplin Clifton Court predation mortality on juvenile .ste.elhead was
(Hanson Env.) Forebay 78% (+- 4%) to 82% (+- 3%) within the forebay.
Prior diet studies had not shown that steelhead
Hanson (Hanson were preyed on by striped bass. In prior diet
Env.) studies, juvenile steelhead were not observed in
striped bass stomach samples and steelhead
were assumed to be large and not preyed on.
This study demonstrated that predation
mortality could be substantially higher than
suggested by diet studies. Adult striped bass
were tagged and their movement recorded using
acoustic tags. Striped bass were able to move
out of the forebay when the radial gates were
open.
Gingras 1997 | Mark/Recapture | This study is a compilation of results of mark-
(CDFG) Experiments In | recapture studies done using juvenile Chinook
Clifton Court salmon and juvenile striped bass released into
Forebay To Clifton Court Forebay. Pre-screen losses for
Estimate Pre- juvenile salmon (8 studies) ranged from 63-99%:;
Screening Loss pre-screen losses for striped bass (2 studies)
To Juvenile ranged from 70-94%. Results were used to
Fish: 1976-1993 | refine the pre-screen losses for juvenile Chinook
salmon used in the SWP mitigation calculations.
Mark-recapture studies were performed using
hatchery reared juvenile salmon and striped
bass. There were a number of questions about
the experimental design but the results all
showed similar loss patterns.
Gingras and 1997 | A Telemetry Pre-screen losses in Clifton Court Forebay were
McGee (CDFG) Study Of Striped | attributable primarily to predation by subadult

Bass Emigration

and adult striped bass. Acoustic tags were used
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From Clifton

to assess the movement of striped bass within the

Court Forebay: | forebay. Results of the Acoustic tag studies
Implication For | demonstrate that subadult and adult striped
Predator bass can migrate into and out of Clifton Court
Enumeration Forebay (open exchange with the Delta) during
And Control periods when the radial gates are open. Based
on these results DWR decided that harvest and
removal of striped bass would not be effective in
controlling pre-screen losses within the forebay.
Kano (1990) and Brown et al. (1995) report on
the species and abundance of predatory fish
inhabiting Clifton Court Forebay. Striped bass
and catfish are the two dominant predatory fish.
Results of Clark ez al. (2009) also showed that
striped bass can move out of the forebay.
Baxter (CDFG) | 2008 | Interagency This report presents a synthesis of information
Breuer (DWR) Ecological and hypotheses regarding the potential factors
Brown (USGS) Program 2008 cont'ributing to the POD. The work plan
Chotkowski Work Plan To outlines the conceptual model for the POD and
Evaluate The identifies various studies and monitoring
(USBR), Feyrer . . i
(DWR DeClll.le of . programs. The p.lan identifies .ele:vat.ed
Pelagic Species predation mortality and food limitations as
Herbold In The Upper important mechanisms but provides no
(USEPA) San Francisco quantification. The plan describes POD studies
Hrodey Estuary to model striped.bass predation ifl the Delta and
USFWS) effects of predation on POD species (pg 25). The
plan also includes population modeling of delta
Mueller-Solger smelt and striped bass as important studies (pg
DWR) 27). Information on studies that are being
Nobriga funded or linked to POD investigations are
(CALFED) described (pg. 30). The 2008 plan is an
Sommer (DWR) expansion of the 2007 POD work plan.
Although qualitative, the plan shows the
Souza (CDFG) conceplgua(llmodel for POlg studies and research.
Lindley (NMFS) | 2003 | Modeling The CDFG proposed to stock striped bass into the
Effect Of Striped | Delta to increase the bass population and
Mohr (NMFS) Bass On The support the recreational fishery. Concern was
Population expressed about the potential impacts of the
Viability Of program on recovery (or extinction) of listed fish
Sacramento such as winter-run Chinook salmon. A
River Winter- statistical modeling approach was used to assess
Run Chinook the potential risk of increased predation by
Salmon striped bass on declines in abundance and

recovery of winter-run salmon. The model
estimated that at a striped bass population
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abundance level of 1,000,000 adults an
individual juvenile winter-run salmon had a 9%
chance of being eaten by a striped bass. The
probability of winter-run extinction (assuming a
density dependant model) was 23% assuming no
striped bass, 28% assuming a striped bass
population of 512,000 fish and 30% assuming a
striped bass population of 700,000 fish (the
probability of extinction increased to 55% at a
striped bass abundance of 3 million). The
probability that winter-run salmon will recover
decreased from 11% at a bass abundance of
512,000 to 10% at a bass abundance of 700,000
(the probability of recovery was 4% at a bass
abundance of 3 million). The relative change in
extinction and recovery was similar assuming a
density independent model but the absolute
estimates were different. The paper concludes
that striped bass eradication would not be
enough to ensure recovery of winter-run salmon,
but that increases in bass abundance would be
expected to increase the risk of extinction and
reduce the probability of recovery.

Merz (EBMUD)

2003

Striped Bass
Predation On
Juvenile
Salmonids At
The Woodbridge
Dam Afterbay,
Mokelumne
River, California

The report documents predation by striped bass
on juvenile fall-run Chinook salmon on the
Mokulumne River during the spring
outmigration period. At a water temperature of
15 C the report estimates that striped bass in the
lower Mokelumne River consume 1.8 to 3.3
juvenile salmon per day. The estimated
predation mortality in spring of 1993 attributed
to striped bass predation ranged from 11-28%
of the juvenile salmon migrants (based on diet
samples that contained identified juvenile
salmon) with a maximum estimate of 51.1 %
(based on positively identified and suspected
salmon in striped bass stomachs). The report
documents predation hot spots during the spring
in rivers where juvenile salmon are migrating
and that predation mortality can be high. The
study was limited to a small area in spring 1993.
Results were consistent with the hypothesis that
adult striped bass migrate upstream into the
rivers to spawn during the spring where they
prey on juvenile salmon and other fish
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migrating downstream within the rivers.
Results of this and other diet studies have shown
a greater risk of striped bass predation on
salmon within the rivers than further
downstream within the broader reaches of the
estuary.

Nobriga 2007 Results of field studies (March-October 2001
(CALFED) and 2003) conducted within the Delta showed
that striped bass eat mostly fish in the summer
Feyrer (DWR) and fall (across all sizes of bass) and that even
relatively small bass prey on fish. Striped bass
Shallow-Water were wide spread and collected at all sites
Piscivore-Prey sampled in both years. Diet study results
Dynamics In showed that juvenile salmon are preyed on
California’s during the spring migration period in relatively
Sacramento-San | low frequency: delta smelt were not reported to
Joaquin Delta occur in the diet study for striped bass. The
study concludes that striped bass likely remain
the most significant predator on Chinook
salmon and delta smelt among the three
predator species studied due to its ubiquitous
distribution in the estuary and its tendency to
aggregate at water diversion structures. The
study does not quantitatively estimate predation
mortality striped bass.
Bennett (UCD) 2005 | Critical This report presents a synthesis and analysis of
Assessment Of information on the life history and factors
The Delta Smelt | affecting the population dynamics of delta smelt.
Population In The study documents depressed liver glycogen
The San levels and other histopathology suggesting food
Francisco limitation effects on larval delta smelt growth
Estuary, and survival. Drought conditions may increase
California the likelihood and/or severity of food-limitation
effects. The report offers only a brief and
qualitative discussion of competition and
predation effects by non-native species. The
report does not quantify or specifically address
the potential effects of either competition or
predation by striped bass on delta smelt.
Nobriga (DWR) | 2005 | Fish Community | Analysis of results of fishery surveys conducted
Ecology In An within the Delta showed that the highest
Feyrer (DWR) Altered River abundance of striped bass was found in fishery
Baxter (CDFG) Delta: Spatial samples collected from habitats dominated by
Chotkowski Patterns In turbid open water where the highest densities of
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(USBR) Species delta smelt, juvenile Chinook salmon, and
Composition, splittail were also observed. Special status fish
Life History were less common in habitats dominated by
Strategies, And | submerged aquatic vegetation (SAV). The study
Biomass does not quantify predation losses on delta smelt
or other listed fish.
National Marine | 2009 | NMFS Biological | Describes the effects of water project operations
Fisheries Opinion and on habitat conditions and the predicted response
Service (NMFS) Conference of winter-run and spring-run Chinook salmon,
Opinion on the Central Valley steelhead, and green sturgeon.
Long-Term
Operations of
the Central
Valley Project
and State Water
Project
CDFG 1998 | Draft Striped The draft striped bass management plan and
Bass associated draft conservation plan for striped
Management bass management program provides a summary
Program EIR of the striped bass diet studies conducted
and Incidental through the early 1990’s within the estuary and
Take Permit rivers. The plan provides estimates of the
Application. percentage loss to winter-run and spring-run
The final EIR Chinook salmon, steelhead, delta smelt, and
was issued in splittail attributable to striped bass predation as
June 1998. a function of striped bass population abundance.

The EIR identifies striped bass predation
mortality as significant. The conservation plan
includes key conservation strategies that would
be used to reduce the adverse impacts of striped
bass predation in the event that special status
species abundance declines below prescribed
thresholds (no mention of altering the harvest
regulations as a conservation action). The EIR
and incidental take permit application estimates
that predation mortality on winter-run salmon
would be 5.6% (4.8-6.5%) at a bass population
of 712,000 and 4% (3.4-4.7%) at a bass
population of 515,000. Estimated predation
mortality on spring-run salmon would be 3.2%
at a bass population of 712,000. Estimated
predation mortality on Central Valley steelhead
would be 3.2 to 5.6% at a bass population of
712,000. Estimated predation mortality on
delta smelt would be 4.9% at a bass population
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of 712,000. The EIR and incidental take
application provides quantitative estimates of
the relationship between striped bass abundance
and predation mortality of listed fish within the
Bay-Delta. The EIR reports that these
predation estimates were reviewed by NMFS
and USFWS prior to publication of the draft
EIR. Appendix E to the EIR provides a brief
discussion of the methods and assumptions used
in deriving predation mortality estimates.

Stevens (U.C. 1963 . Results of striped bass diet study conducted in
Food Habits of . -
Berkeley) . the Sacramento River between Rio Vista and
Striped Bass, . . .
- Sacramento showed that juvenile Chinook
Roccus saxatilis . .
. salmon were the dominant prey of striped bass
(Walbaum) in . . . .
during June with predation extending through
the Sacramento- . .
. xre August. Predation rates by striped bass were
Rio Vista Area . . c .. . .
of the increased in the vicinity of the Paintersville
S Bridge. The study concluded that predation by
acramento . . . .
Ri . . striped bass occurs on juvenile Chinook salmon
ver. University .
. . and recommended that future striped bass
of California. X X .
predation/diet studies extend further upstream
within the Sacramento River where predation
on juvenile salmon was found to be high
compared to predation further downstream in
the Delta where channels are wider and juvenile
salmon have a lower risk of being detected by
striped bass when compared to the confined
river channel.
Stevens (CDFG) | 1966 | Food habits of Striped bass diet study conducted within the
striped bass Delta and Suisun Bay. Striped bass diet was

(Roccus saxatilis)
in the
Sacramento-San
Joaquin Delta.
Pages 68-96 in
J.L. Turner and
D.W. Kelley, eds.
Ecological
studies of the
Sacramento-San
Joaquin Estuary,
part I1: fishes of
the Delta. CDFG
Fish. Bull.136.

estimated for various regions of the Delta by
season. Striped bass were not collected in the
Sacramento River upstream of Isleton. The
study results provided part of the basis used by
CDFG in estimating striped bass predation
mortality on listed fish in the 1998 EIR and
incidental take application prepared for the
striped bass management program.
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Thomas 1967 The diet of Striped bass diet study conducted within the
juvenile and Delta and Suisun Bay but also included striped
adult striped bass sampled for diet in the Sacramento River in
bass, Roccus the reach from Rio Vista to the confluence with
saxatlis, in the the American River. Striped bass diet was
Sacramento-San estimated for various regions of the Delta by
Joaquin river season. The study did not sample striped bass in
system. the river during the winter but did sample
California during the spring. Study results showed that
Department of juvenile salmon were the dominant prey of
Fish and Game striped bass in the river during the spring with a
53(1):49-62. frequency of occurrence of 62% based on a

sample of 45 striped bass. The study results
provided part of the basis used by CDFG in
estimating striped bass predation mortality on
listed fish in the 1998 EIR and incidental take
application prepared for the striped bass
management program.

Bowen (USBR) | 2009 2009 E).(perimental study in.the lower San. Joafluin .

Hiebert (USBR) effectiveness of a River that. useq acoustic tags to monitor JuYenlle
non-physical fish salmon mlgratlon. and response to th.e barrier.

Hueth (SAIC) barrier at the Results showed high levels of predation.

Maisonneuve divergence of the

(SAIC) Old and San
Joaquin Rivers
(CA)

Perry (Univ. 2008 Survival and Results of acoustic tag studies were used to

Washington) and migration route determine the migration route and mortality

Skalski (Univ. 2009 probabilities of rates of juvenile salmon. The studies were

Washington) juvenile Chinook limited to the reach of the Sacramento River

salmon in the
Sacramento-San
Joaquin River
Delta during the
winter

downstream of Sacramento. Results showed
high mortality rates for some of the migration
pathways.
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Exhibit 3. Results of CDFG unpublished bioenergetic estimates of striped bass
predation on winter-run salmon.
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Table 1. CDFG bioenergetic predation estimate on winter-run salmon:
1993.
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Table 4. CDFG bioenergetic predation estimate on winter-run
salmon: 1996.
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