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Abstract


Understanding seasonal migration and localized persistence of populations is critical for


effective species harvest and conservation management. Pacific salmon (genus Oncor-

hynchus) forecasting models predict stock composition, abundance, and distribution during


annual assessments of proposed fisheries impacts. Most models, however, fail to account


for the influence of biophysical factors on year-to-year fluctuations in migratory distributions


and stock-specific survival. In this study, the ocean distribution and relative abundance of


Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine


ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic


stock identification data. In contrast to stock distributions estimated through coded-wire-tag


recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information


for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the


stock-specific CPUE metric is independent of other stocks and is easily interpreted over


multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and


stock composition estimates revealed these measures diverged once proportional contribu-

tions of locally rare stocks were excluded from data sets. A novel aspect of this study was


collection of data both in areas closed to commercial fisheries and during normal, open


commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested


whetherCPUE differed between closed area (non-retention) and open area (retention) data
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sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations


produced from stock-specific CPUE-based ocean abundance facilitates consideration of


how highly refined, spatial and genetic information could be incorporated in ocean fisheries


management systems and for investigations of biogeographic factors that influence migra-

tory distributions of fish.


Introduction


Ocean fisherymanagement depends on understanding fish stock abundance and migratory


patterns ofmovement to meet the dual objectives ofconservation and harvest [1]. Pacific


salmon (Oncorhynchus spp.) provide an interesting case studybecause they are highlymigra-

tory, variable in abundance [2,3], and have high ecological, cultural, and economic importance.


Most species rear in freshwater, migrate to the ocean where theygrow, and return to freshwater


to spawn and die. They enrich freshwater habitat by transferring nutrients from the ocean, pro-

viding food for a wide variety ofanimals and fertilizing the surrounding vegetation. Genetic


stock structure in salmon arises from fidelity to their natal streams and the timing oftheir


breeding readiness, two traits that permit adaptation to the local environment [4–6]. More


than 100 genetically differentiated stocks ofChinook salmon (O. tshawytscha) originate from


the west coast ofNorth America from Alaska to California [7–9]. During ocean migration,


salmon form mixed stockaggregations that are often subject to fishing pressure. Salmon fishery


management therefore requires knowledge ofcomplex stock-specific life historypatterns in


concert with annual variation in stock-cohort abundance. Knowledge ofseasonal migratory


patterns and localized persistence ofpopulations in the ocean are currently dependent on


coarse-scale historical data. In this study, we explore the use offine-scale sampling ofChinook


salmon catch and effort in ocean fisheries, along with genetic stock identification (GSI), to


describe stock-specific local abundance and migration patterns.


The Pacific FisheryManagement Council (PFMC) develops managementmeasures for Chi-

nook salmon ocean fisheries in the southern portion ofthe California Current large marine


ecosystem, United States ofAmerica (USA) [10]. A single-season modeling tool called the


“FisheryRegulation Assessment Model” (FRAM) is used by the PFMC to predict cohort-based


stock abundance and time and area stock compositions [11]. Using those modeled data, fishery


harvest scenarios are analyzed to assess impacts to stocks, with the end goal ofmaximizing har-

vest while meeting conservation targets. This model relies heavily on mark and recapture data


from mostly hatchery fish implanted with coded-wire-tags (CWT) that indicate source stock


and cohort year [12,13]. Fish are sampled when landed at port or on return to hatcheries. The


CWT recoveries are expanded by sampling (usually about 20%) and marking rates (usually


about 5%) to estimate the number oftagged and untagged fish from each markgroup in the


modeled fishery [13]. CWT release groups are often used as “indicator stocks” for unmarked


natural production. The FRAM model assumes (see model documentation for a full list) that


sampling for CWTs is random, that CWT fish accurately represent the modeled stock, and that


stockdistributions and migratory timings are constant from year to year. However, mark selec-

tive fisheries implemented in recent years require the release ofsome fish. Furthermore, evi-

dence is accumulating that some hatchery fish are less fit than their wild stock counterparts


[14,15], and spatial and temporal fluctuations in marine environmental conditions influence


stockdistribution and survival [16–18]. Perhaps the most troubling aspect ofmodeling fisher-

ies with CWT data is the delay in compiling all the recovery data required to reconstruct
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complete cohorts and estimate stock composition in fisheries. The precision and usefulness of


fisheries managementmodels would likely be increased byusing data that more precisely esti-

mate fishery stock composition, provide additional information about relative stock abun-

dance, and are available in a timelier manner.


Genetic stock identification (GSI) [19–21] and CWTs are two tools that have proven useful


for identifying individual fish to stock oforigin and to model the proportion ofstocks present


in a fishery sample. GSI compares genetic profiles ofsamples with unknown stock origins


against a reference “baseline” database ofgenotypes from individuals with known origins


[19,20]. One advantage GSI has over CWTs is that all salmon carry a genetic profile and can


potentially be assigned to a stock oforigin. Thus, GSI estimates are not biased by expansion


factors inherent to proportional tagging programs, which most CWT programs are, and even


small sample sizes can be data rich. Another difference is that tissue samples for GSI can be


obtained non-lethally, whereas CWT recovery requires removal ofthe fish’s snout. For these


reasons, fisheries managers in Canada [22,23] and Alaska [24] have implemented in-season


GSI sampling or test fisheries that guide implementation ofstock-specific exploitation targets.


These managementmeasures have resulted in concomitant benefits ofgreater fishing opportu-

nity and strengthened conservation for stocks ofconcern. Despite these successes, and the


potential for GSI to improve salmon fisheries management [25,26], incorporation ofGSI into


marine harvest management in mainland US waters is limited.


Chinook and coho salmon (O. kisutch) are the two predominant salmon species encoun-

tered in salmon fisheries ofthe California Current. Both have a southern spawning distribution


[27] and use the cool, upwelled water in the coastal shelfas a migratory corridor and feeding


ground [28,29]. Harvest ofcoho salmon has been severely restricted or completely closed off


the coasts ofthe U.S. states ofOregon (OR) and California (CA) over the past two decades


because ofconservation concerns [3]. Although the Chinook salmon fishery has persisted, the


failure ofsome stocks to meet conservation targets in recent years has resulted in large-scale


time and area fishery closures. The salmon fisherywould benefit from techniques that increase


accuracy and spatial resolution offisheries stockdistribution forecasts and provide for finer-

scale control ofharvest impacts.


Concern for salmon conservation and a sustainable fishery led commercial salmon fisher-

men, fisheries managers, and scientists in OR, CA, and Washington states to band together to


develop novel solutions to issues facing salmon management. Together we utilized newly


developed genetic resources [8,30] and geo-referenced catch and fishing effort data to elucidate


fine-scale patterns ofrelative abundance and distribution for Chinook salmon stocks encoun-

tered in the California Current ecosystem during the year 2010. MostGSI studies report only


stock composition data. In this study, we use genetic stock identifications with high-resolution


fisheries catch and effort data to calculate stock-specific catch per unit effort (SSCPUE). We


then assessed correlations between SSCPUE and stock composition results to identify condi-

tions that lead to discordance between these two measures and identify situations where each is


more appropriate. The at-sea catch and effort data were collected by fishermen using one of


two sampling techniques: “retention” (open commercial fishery, fish retained for sale) or non-

retention (areas closed to commercial fishing but open to catch and release sampling). To


determine ifsampling technique had an effect on CPUE, we analyzed catch rates for time-area


strata that had both types ofsampling conducted within short time periods.


Novel assessments and visualizations ofstock-specific ocean distribution patterns facilitate


the consideration ofhowhighly refined spatial information might be incorporated into ocean


salmon fisherymanagement and used to better understand fish migration. The methods devel-

oped here are broadly applicable for measuring the migratory distribution and abundance data


ofany group ofpopulations for which stock-origin and CPUE data are available.
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Methods


At-sea data collection and sampling

Salmon troll fishermen in possession ofactive, state-issued commercial fishing licenses (issued


byCalifornia or Oregon Departments ofFish and Wildlife) collected all Chinook salmon fin-

clip samples used in this study. These fin-clips were collected from fish caught during an open


fishery and retained as part ofcommercial fisheries harvest (“retention fishery”) or from fish


caught and released in areas closed to commercial fishing but open to non-retention sampling


(“non-retention sampling”) as authorized by the Pacific FisheryManagement Council and


other permits, described in detail below. For samples collected during the open fishery, after a


fish retained for commercial sale was terminated, the fishermen removed from each fish a


small fin-clip for this study. No additional permits were required for obtaining fin-clip samples


from commerciallyharvested fish. For samples collected in areas closed to commercial fisheries


but open to non-retention sampling, commercially licensed salmon fishermen used the same


troll method to catch fish, but the fish were sampled and released alive [31]. Each fish was


brought up to the side ofthe boat in a soft net (with no knots), handled as gently and as quickly


as possible, and released after obtaining a small (typically< 1 cm x 1 cm) fin-clip. This non-

retention sampling activitywas permitted by: National Marine Fisheries Service Scientific


Research Permit, Scientific Collecting Permits issued by the ORDepartment ofFish and Wild-

life and the CA Department ofFish and Game (nowWildlife), and a letter from the Interna-

tional Pacific Halibut Commission. For the non-retention fishery one author, Peter W.


Lawson, National Marine Fisheries Service and one non-author, Churchill Grimes, National


Marine Fisheries, were in possessions ofthe permits. The permits specifically covered commer-

cially licensed fishermen participating in this study to obtain fin clippings from the fish that


were sampled from the non-retention fishery. The non-retention fin-clippings were taken for


the purpose ofthe research described in this study, additional research, and for the develop-

ment offisheries management applications using genetic stock identification. The non-reten-

tion sampling impacts were allocated as "GSI Sampling Impacts" by the Pacific Fishery


Management Council during the 2010 salmon season setting process.


At-sea data collection and biological sampling were conducted by commercial troll salmon


fishermen in coastal waters ofthe California Current large marine ecosystem from Cape Fal-

con, OR (latitude (lat) 45.77° North (N)) southward to near the CA Channel Islands (lat


32.53°N), bounded by approximate longitudes 125.00° West to 120.000° West. A stratified


sampling plan was implemented with the objective ofcollecting tissue samples from 200 legal-

sized Chinook salmon (typically three years ofage or older) per week (~ 800 per month) from


six ofseven fisheries management zones managed by the PFMC (Fig 1): North Oregon Coast


(NO), lat 45.767° to 44.015°N; Central Oregon Coast (CO), lat 44.015° to 42.667°N; Klamath


Zone Oregon (KO), lat 42.667° to 42.000° N; Klamath Zone California North (KC-n), lat


42.000° to 40.765°N (with no sampling permitted in the KC-south 40.765° to lat 40.083° N);


Fort Bragg (FB), lat 40.083° to 38.958°N; and Monterey (MO), lat 37.183° to 32.584°N. The sev-

enth zone, San Francisco (SF), lat 38.958° to 37.183°N, was divided at the Point Reyes peninsula


(37.996°N) into north (SF-n) and south (SF-s) areas with the 200 sample size objective for each


area. The MO zone was sampled as a single unit, but data were divided at Point Sur (36.300°N)


into north (MO-n) and south (MO-s) areas for analysis purposes. Accordingly, results and


data are presented for a total ofnine different area strata.


For PMFC managed fisheries south ofCape Falcon, the forecasted low-abundance ofCA


Central Valley fall stock sparked conservation concerns. Consequently, the 2010 CA commer-

cial fisherywas mostly closed [10]. However, to enable broader sampling, the PFMC devised


fishing regulations to allow for scientific impacts from non-retention sampling (up to 200 fish
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legal- and sub-legal sized) in time-area strata closed to commercial fisheries. A maximum of


five vessels, required to remain within their designated area, were allowed to expend up to 15


vessel days ofeffort (total) per closed week-area stratum. Retention fisheries, by contrast,


allowed for fishermen to fish (and sample) in whichever open sampling area they chose, and


no limits were applied to the number ofcommercial fishing vessels allowed per time-area stra-

tum (both sampling and non-participating fishing vessels). In CA, the SF and MO areas were


only open to retention fisheries for eight days, July 1–4 and 8–11. The FB area was open during


those days, plus July 15–29 and all ofAugust. The ORfisherywas open from May through


August, except in the KO area, which was closed for the month ofJune. All areas from Cape


Falcon to the US/Mexico international boundarywere closed during September. Shore-based


fleet managers in ORand CA coordinated vessel-days effort on a daily or weekly basis to


activelymanage progress towards sampling goals.


Fishermen collected a small fin clip for genetic analysis and recorded fish lengths at time of


capture. Retention size limits differed slightly between ORand CA (28 and 27 inches total


Fig 1 . Troll fishing effort and Chinooksalmon catch locations. Catch locations (n = 9,584) are shown as

black dots while vessel-days effort (n = 2651 ) are conveyed as shaded contours. Fishing vessels locations

were logged byGPS units in five-minute intervals. Regional boundaries with area abbreviations are: Cape

Falcon to Florence south jetty, North Oregon Coast (NO, latitude (lat) 45.767° to 44.015°N); Florence south

Jetty to Humbug Mountain, Central OR Coast (CO, 44.015° to 42.667°N); Humbug Mountain to CA/OR

border, Klamath Zone OR (KO, 42.667° to 42.000°N); CA/OR border to Humboldt south jetty, Klamath Zone

California-north (KC-n, 42.000° to 40.765°N, with no sampling permitted in the KC-s between 40.765°N to

40.083°N); Horse Mountain to Point Arena, Fort Bragg (FB, 40.083° to 38.958°); Point Arena to Point Reyes,

San Francisco north (SF-n, 38.958° to 37.996°N); Point Reyes to Pigeon Point, San Francisco south (SF-s,

37.996° to 37.1 83°N); Pigeon Point to Point Sur, Monterey north (MO-n, 37.183° to 36.300°N) and Point Sur

to Mexican Border, Monterey south (MO-s, 36.300° to 32.584°N).


doi:10.1371/journal.pone.0131276.g001
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length, respectively). Fish with missing length data and sampled during non-retention fisheries


were estimated as legal or sub-legal sized based on the proportion ofknown legal-sized to total


fish sampled in the same month-area stratum. Catch locations and times were electronically


logged bymanuallymarking waypoints on a hand-held Global Positioning System (GPS) unit


when fish were landed on the vessel deck. The same units were programmed to record, in five


minute intervals, fishing effort (date, time, lat and longitude) for CPUE modeling.


Comparison to commercial fishery

To provide context for this studywe compared numbers offish landed, vessel-days offishing


effort, and numbers ofparticipating fishermen to the overall 2010 commercial fishery. The


commercial fishery data were obtained from the PFMC’s Salmon Document Library: Historical


Data ofOcean Salmon Fisheries “Blue Book” AppendixA, Ocean Salmon FisheryEffort and


Landing, and AppendixD, Economic Data (available from http://www.pcouncil.org/salmon/


background/document-library/historical-data-of-ocean-salmon-fisheries/). A simplifying


assumption was that all PFMC data reported for ports Astoria and Tillamookwere from


fisheries conducted north or south ofCape Falcon, respectively. The ORSeptember and


October terminal fisheries catch and effort data were excluded from analysis.


Statistical modeling of CPUE

Model selection and modeling variability in CPUE. Time and area variability in mean


CPUE, defined as legal-sized catch per vessel-day offishing effort, was statisticallymodeled


with associated error using Generalized Linear Models (GLMs). The following model terms


were considered: sample area (“area”), time-period (“time”, at week or month intervals), fisher-

men effect (a measure ofindividual fisherman power), and fishery sampling technique (reten-

tion or non-retention). Two types ofGLMs, Poisson and log-linear negative binomial, were


initially considered. CPUE data were overdispersed (likelihood ratio test Chi-square test statis-

tic for overdispersion = 7400.98, p-value = < 2.2 e -16), and the negative binomial model was


better supported than the Poisson model (Vuong non-nested hypothesis test statistic -18.49, p-

value = 1.2 e -76 [32]). Therefore, log-linear negative binomial models were selected for model-

ing CPUE variability and to assess the predictive power ofexogenous variables on fish catch.


Model performance was assessed using delta Akaike Information Criteria (ΔAIC) between a


model with no terms and alternative models with terms. Individual terms were also tested for


significant effects using an ANOVA with a significance cutoffofp < 0.05. The strength ofeach


term’s effect was evaluated by the relative amount ofdecrease in residual deviance that resulted


from that term’s inclusion. Only vessel-days (and catch) having GPS track log records and at


least 85% offishing effort expended in a single sampling area during a single daywere included


in GLM data sets. The CA July retention and non-retention data were combined for the


month-area model. Week-area combinations having zero catch for all sample days (n = 14


days total within nine of168 week-area combinations) were excluded because that pattern of


data results in null values in the maximum likelihood estimator (quasi-complete separation


problem [33]). For similar reasons, the terms “time” and “area” could not be modeled with the


term “fishermen effect”. Analyses were performed in Rversion 2.15.2 with packages foreign (v


0.8–54), mass (v 7.3–23), car (v 2.0–18), lattice (0.20–23) and pscl (1.04.4).


Effect ofnon-retention and retention sampling technique on CPUE. We investigated


the potential impact ofsampling technique on fish catchability using two approaches. First,


GLMs were used to statistically test for differences in CPUE between retention and non-reten-

tion fisheries. Five area-specific GLMs were run, each using data collected over approximately


comparable time-periods. In four ofthe five area analyses, retention fisheries data collected
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July 1–4 and 8–11 were compared to non-retention fisheries data collected July 13–28 (areas


SF-n, SF-s, MO-n, MO-s). The fifth area model, for FB, the June/non-retention was compared


to July/retention fishery. Statistical significance was evaluated using an uncorrected p-value


of< 0.05. For the second approach, a Chi-square test was used to evaluate whether retention


and non-retention fisheries differed in the proportion of“successful” (at least one fish caught)


versus “unsuccessful” (zero fish caught) fishing days. The data were partitioned by time period


for this analysis: FB June/non-retention fisherywere compared to July/retention fishery, and


the SF- and MO early-July retention data were compared to the non-retention fishery data col-

lected over the latter halfofthe month.


Effect offisherman on CPUE. Individual fisherman skill and vessel efficiency is expected


to vary across the fishing fleet, but measuring these effects on CPUE is confounded by inherent


limitations ofthe studydesign. Individual fishermen sampled on an intermittent basis, typi-

cally in a single area. Because fish abundance varies over time and space, an individual fisher-

man’s catch rate cannot be specifically attributed to their prowess. In spite ofthese study


design limitations, we evaluated the effect ofindividual fisherman performance on CPUE,


because our results provide a rough idea ofbetween-fisherman catch success, regardless ofthe


cause. Model results mayhelp guide future studydesign.


Genetic stock identification

Oregon—microsatellites. Genomic DNA was extracted from fin-clips using silica-fiber


Pall-plates [34] and arrayed into 384 well plates for genotyping. Polymerase chain reaction


(PCR) was used to amplify 13 microsatellite loci standardized as part ofan international base-

line for Chinook salmon [8,9]. This baseline (v3.0) contains genotypes from over 30,000 Chi-

nook salmon from 233 populations ranging from CA to Alaska, USA (S1 Appendix). Forward


primers were fluorescently labeled and PCRproducts visualized using an Applied Biosystems


model 3730xl Genetic Analyzer. GeneMapper software was used to assign standardized allele


calls. Fish with identical or nearly identical genotypes (> 90% similarity) were identified using


Microsatellite Toolkit [35] and excluded from analysis. Only fish that provided useful data at 7


or more loci were included in the final genetic data set.


California—single nucleotide polymorphisms. Samples collected offthe coast ofCA


were genotypedusing a panel of96 single nucleotide polymorphism (SNP) markers [36] and


the associated genetic baseline designed specifically for use in estimating stockcomposition in


PFMC-managed fisheries [30]. SNP markers are both cheaper and faster to assay than microsat-

ellites andhave lower genotyping error and missingdata rates. Genomic DNA was extracted


from fin clips using DNEasy 96 filter kits on a BioRobot 3000 (QIAGEN Inc.) after digestion in


proteinase K. A preliminaryPCRwas performedwith primers for all 96 SNP loci, followed by


individual locus PCRs performed on 96.96 Dynamic GenotypingArrays (Fluidigm Corpora-

tion). Results were visualized using the EP1 instrumentation (Fluidigm) according to manufac-

turer’s protocols. Genotypes were scored with Fluidigm SNP Genotyping analysis software and


identical or nearly identical genotypes were identified and filtered as detailed for microsatellites.


The SNP baseline database includes 68 populations that represent > 99% ofall fish found in


ocean fisheries offCA and OR [36]. The sampling ofCA Chinook salmon populations is


denser in the SNP than the microsatellite baseline. Chinook and coho salmon are sister species


and are occasionallymisidentified in the field. Thus, coho salmon genotypes for the 96 SNP


markers were added to the baseline to identify and exclude that species offish. Fish genotypes


missing more than 20 loci or which had individual heterozygosities less than 0.16 or greater


than 0.56, to correct for allelic dropout and contamination respectively, were removed from


the final dataset.
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Mixed stock fishery analysis. The program gsi_sim, which uses both genotype frequencies


and mixture proportions when estimating the origin ofindividuals (available at http: http://


swfsc.noaa.gov/textblock.aspx?Division=FED&ParentMenuId=54&id=12964) [37,38], was


used for mixed stock analysis and individual assignments. A sliding-windowapproach was


used as follows to represent the proportion ofeach reporting unit in the Bayesian prior. Geno-

type data were partitioned into weekly strata for each fisherymanagement zone and each


week’s data were then analyzed in the context ofgenotype frequencies observed in the weeks


immediately before and after the focal week. Individual assignments were then collated into


monthly stockproportions. GSI techniques generally assign all fish ofunknown origin to a


stock represented in the baseline. Here, we implemented a novel maximum likelihood method


in gsi_sim and described byClemento et al. [30] to evaluate whether fish may actually have


originated from a stock/reporting group not represented in the baseline.


For GSI applications, populations were aggregated into ‘reporting groups’ consistent with


Seeb et al. [8], with one exception. Here, the CA Central Valley spring stock from the Feather


River was placed into the CA Central Valley fall reporting group because ofknown hybridiza-

tion between these stocks [21,39]. After mixed stock fishery analysis was performed, higher-

level regional groupings ofAlaska, British Columbia, Canada (two groups: Vancouver Island /


mainland and Fraser River basin) and Puget Sound stocks were used to reduce the total num-

ber ofreporting groups. At the regional grouping levels used in this study, almost all reporting


units are easily resolved with both baselines [8,30]. Known exceptions for the microsatellite


baseline are lowpower to correctly assign fish to Deschutes fall [8,40] and some Columbia


River (e.g., Snake River fall, Lower Columbia River spring [40]) stocks.


Comparison between stock origins identified by GSI and CWT

The power ofthe microsatellite baseline to accurately assign individuals to source populations


was empirically tested by comparing GSI results to stock identifications for fish with CWTs


recovered during commercial fishery dockside sampling in OR. The GSI retention-sampled


fish were labeled with physical barcodes (by fishermen) to enable cross-referencing byport


samplers. Lowconfidence assignments (individual posterior probabilities of


assignment < 0.90) and fish from stocks reared or released out-of-basin were excluded from


CWT-GSI comparisons. Using the SNP baseline, a similar comparison to CWT data in CA was


performed byClemento et al. [30], but on a separate set offishery samples.


Stock richness, distribution and CPUE-based abundance patterns

Stockdistribution, abundance and richness (the number ofreporting groups present in a sam-

ple) for month-area strata were inferred by partitioning CPUE-based measures ofabundance


into stock-specific contribution estimates from GSI results (stock-specific catch per unit effort,


SSCPUE). Here, CPUE was measured as the sum oflegal-sized fish encounters (sampled and


unsampled fish) divided by the sum ofdays fished per month-area stratum. Thus, SSCPUE for


stock i in stratum j would be calculated as:


SSCPUE ¼ stockistratumj  ðn legal  sized fish encounters  n vessel  days effort Þstratumj


The resultant values represent the number (usually a fraction) offish from each stock that


fishermen would, on average, encounter per vessel-day fishing effort in a given stratum. This


method accounts for unsampled fish and those that did not meet genotyping or GSI assign-

ment criteria. Ifa vessel crossed over an area boundaryduring a single day, the effort was


assigned in proportion to the amount ofGPS-recorded time spent in each area and catch was


allocated to the area where the fish was caught. Reporting groups that contributed to three or


Geo-Referenced, Abundance Calibrated Ocean Distribution of Chinook


PLOS ONE | DOI:1 0.1371 /journal.pone.0131276 July 22, 2015 8 /25


http://swfsc.noaa.gov/textblock.aspx?Division=FED&ParentMenuId=54&id=12964
http://swfsc.noaa.gov/textblock.aspx?Division=FED&ParentMenuId=54&id=12964
http://swfsc.noaa.gov/textblock.aspx?Division=FED&ParentMenuId=54&id=12964)[37,38],
http://swfsc.noaa.gov/textblock.aspx?Division=FED&ParentMenuId=54&id=12964)[37,38],


fewer strata were excluded to minimize the numbers ofstocks in figures. Confidence intervals


for individual SSCPUE values were not included, but overall sampling error can be inferred


from CPUE modeling results. Simplifying assumptions were that GSI stock composition esti-

mates were accurate, CPUE was unaffected by sampling technique, and that CPUE was propor-

tional to abundance. Results for all stocks and strata are graphically presented with bar graphs


in a “small multiples” (sensu Tufte [41]) format, with each element combining overall effort


and log-transformed SSCPUEs for the month-area stratum. For a sub-set ofstocks, distribution


patterns are also presented as filled log-CPUE contour plots generated in SigmaPlot v11.


Breaks in sampling coverage were not incorporated into contour plots because imperfect sam-

pling coverage results in numerous breaks, depending on the time-area scale, and choosing


which sections to mask is subjective. The time-frame “month” was selected for SSCPUE analy-

ses because that is the interval used in PFMC fisheries management.


Comparisons between stock composition and SSCPUE measures

Discord in the relationship between stock composition and corresponding values ofSSCPUE is


expected to occur because, for a target stockwith constant abundance in a given area, a change


in anyother stocks’ local abundance will affect that stock’s proportion ofthe total catch com-

position but not SSCPUE results. Strengths ofassociations between SSCPUE and stock compo-

sition values were examined by calculating the non-parametric Kendall’s tau rank correlation


coefficient (τ). This test evaluates the similarity ofthe orderings ofthe data ranked by each of


the quantities and tests the data set against the null hypothesis ofτ = 0 with a two-sided p-

value of 0.05. Correlations between stock composition and SSCPUE values were first


assessed using all pairs ofnon-zero data (“full data set”) from month-area strata (retention and


non-retention combined). Then, correlations were re-evaluated after considering only data


points above a range ofthreshold values ofpercent stock composition (“threshold data set”),


iterating to find the interval at which Kendall’s τ correlations were reduced to non-significant


(p-values > 0.05) levels. Data were ranked by stock composition because this is the value most


widely reported in the literature. These analyses were also performed on an individual stock


basis for five frequently encountered stocks to reveal perspectives over a variety ofstock rich-

ness and abundance conditions. For a sub-set ofthose stocks, contour plot representations


were created for comparison to SSCPUE contour plot results. Finally, scatterplots with linear


trends were created to visualize and aid interpretation ofdata. The statistical package Wessa


[42] was used for Kendall’s τ analyses.


Results


At-sea data collection and sampling

Fisheries data and samples were collected from 38 ofthe 40 pre-defined month-area strata with


onlyKO/Mayand KC-n/May lacking data. A total of2,651 vessel-days effort yielded 9,584 Chi-

nook salmon encounters (Fig 1, Tables 1 and 2). Fishing effort (and samples) were unevenly


distributed across space and time. Within month-area strata, the number ofvessel-days effort


ranged from 7 to 205 (mean = 62, median = 55; Table 1). Greater fishing effort occurred in the


north where fisheries were open, and lower in the south where non-retention sampling pre-

dominated. In CA, sampling effort trended higher during the open or partially-open time-area


strata (FB and southward/July; FB/August). The overall numbers ofsampling days conducted


using non-retention (1,198, 45%) and retention (1,453, 55%) sampling techniques were similar,


but non-retention sampling in CA fisheries represented 73% ofdays fished (1,079 of1,477


days) whereas ORfisheries had only 10% ofsampling conducted as non-retention (119 of
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1,174 days). The number ofvessels used for sampling was similar in CA (N = 88) and OR


(N = 89).


From the 9,584 Chinook salmon encounters recorded byparticipating fishermen (Table 2)


biological samples were obtained for 9,554 fish. The number oflegal-sized Chinook salmon


encounters per month-area stratum ranged from 2 to 1,102 (mean = 207, median = 91;


Table 1 . Numbers of vessel-days of salmon troll fishing effort for 2010 at-sea sampling across nine spatial strata.


May June July August September Totals


non- 
retention 

Retention non- 
retention 

retention non- 
retention 

retention non- 
retention 

retention non- 
retention 

non- 
retention


retention


NO 75.29 176.96 73.86 181 .35 33.00 33.00 507.45


CO 108.71 166.08 34.14 204.65 30.07 30.07 513.58


KO 0.00 34.96 7.00 27.00 20.93 55.89 34.00


KC-n 0.00 37.00 55.00 60.00 60.00 212.00 0.00


FB1 9.00 47.00 91 .57 120.00 70.00 126.00 21 1 .57


SF-n2 24.00 59.00 32.00 60.20 60.00 59.73 234.73 60.20


SF-s2 52.00 60.00 38.00 48.19 58.00 67.27 275.27 48.19


MO- 
n2


35.69 42.1 1 22.00 60.04 40.00 28.00 167.80 60.04


MO- 
s2


8.31 1 4.89 1 1 .00 18.00 17.00 1 2.00 63.20 18.00


totals 129.00 184.00 294.96 343.04 158.00 393.00 235.00 533.00 381 .00 1 1 97.96 1453.04


1 Open July 1–4, 8–1 1 , 1 5–29, and all of August.

2 Open July 1–4, 8–1 1 .


Monthly numbers of non-retention and retention vessel-days of salmon troll fishing effort. A total of nine spatial strata from Cape Falcon, Oregon (OR) to


Santa Barbara, California (CA) were sampled from May—September 2010. Area abbreviations (also see Fig 1 ): North Oregon Coast (NO), Central


Oregon Coast (CO), Oregon Klamath Zone (KO), California Klamath Zone-north (KC-n), Fort Bragg (FB), San Francisco north (SF-n) and south (SF-s),


Monterey north (MO-n) and south (MO-s).


doi:10.1371/journal.pone.0131276.t001


Table 2. Numbers of sub-legal and legal-sized Chinooksalmon encounters.


May June July Aug Sept Totals


sub-legal Legal sub-legal legal sub-legal legal sub-legal legal sub-legal legal sub-legal legal


NO - 404 - 1 102 - 403 - 1532 7 23 7 2464


CO - 453 - 616 - 75 - 601 31 64 31 1 809


KO - 0 10 - 69 49 86 49 209


KC-n 0 0 6 64 7 127 88 382 121 247 222 820


FB2 6 91 10 1 59 2 483 8 533 49 441 75 1707


SF-n3 1 0 37 23 87 9 395 22 138 13 37 77 694


SF-s3 27 86 78 198 17 99 5 1 14 1 1 70 138 567


MO-n3 6 1 1 3 1 7 1 6 377 34 1 14 42 50 101 569


MO-s3 13


Totals 49 1084 120 2292 51 1982 157 2492 323 1034 700 8884


1 Eight fish encounters were excluded from CPUE calculations (see text for details).

2 Open July 1–4, 8–1 1 , 1 5–29, and all of August.

3 Open July 1–4, 8–1 1 .


Monthly numbers of sub-legal and legal-sized Chinook salmon encounters recorded at-sea during 2010. Area abbreviations (also see Fig 1 ): North


Oregon Coast (NO), Central Oregon Coast (CO), Oregon Klamath Zone (KO), California Klamath Zone-north (KC-n), Fort Bragg (FB), San Francisco north


(SF-n) and south (SF-s), Monterey north (MO-n) and south (MO-s). Retention fishery sampling is indicated by bold, mixed retention/non-retention fisheries


sampling by italic, and non-retention fisheries by regular text.


doi:10.1371/journal.pone.0131276.t002
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includes 28 fish with missing length data estimated as legal-sized). Among strata, average


CPUE ranged from 0.24 to 10.11 fish per vessel-dayoffishing effort (Table 3). The sampling


goal of200 legal-sized fish per week-area stratum was rarely achieved due to these low catch


rates, non-retention permit constraints, and because sufficient numbers ofsampling vessels


were not always available. Larger sample sizes were generally obtained in areas NO, CO, and


FB which had sizeable fleets and more open fishing days. Eight samples included in the fish


encounter and GSI data sets were collected by fishermen participating in a similar project;


these samples were excluded from CPUE analysis because compatible effort data were not


available. After removal ofsub-legal sized fish, fish that failed to yield adequate genetic data


and identification, duplicate genotypes, and some sampled fish that were a different species


(mostly coho salmon), 8,240 individual assignments for legal-sized fish were available for stock


composition estimates (S2 Appendix) and SSCPUE calculations (S3 Appendix).


Comparison to commercial fishery

Project catch and fishing effort provided good coverage relative to the commercial fishery


(Table 4). At-sea catch locations represented 21.4% ofthe total commercial harvest and vessel-

days effort were 20.6% oftotal commercial fishing effort May–August, 2010. The project


CPUEs calculated with inclusion and exclusion ofzero-catch vessel-days effort (6.11 and 7.98


fish / day, respectively) bracketed that ofthe commercial fishery (7.69 fish / day; PFMC data


does not account for trips with zero catch). Approximately 24.1% ofthe total commercial fleet


that made landings in CA and ORduring 2010 participated in this study.


Statistical modeling of CPUE

Time-area variability in CPUE. The majority ofvessel-days effort (n = 2,580 vessel-days,


~97% days fished) met criteria for inclusion in the CPUE modeling data set. The interaction


between exogenous variables “time” and “area” explained more variance than either ofthe


model terms considered individually (Table 5). The next strongest term was “area”, followed


by “time”. Month-area variability in CPUE, with associated sampling error, is presented in Fig


2 (for week-area results see S1 Fig). In most cases, within-area changes in CPUE followed grad-

ual trends over time. Within the northernmost two strata, mean CPUEs were higher early in


the season and then trended downward (NO) or stabilized (CO). In the KO and KC-n, mean


CPUE started low early in the season and then increased, with August/KC-n showing a tran-

sient peak. The area FB, May, mean CPUE was higher than any other sampled area. After dip-

ping in June, the CPUE showed a zigzag pattern for the remainder ofthe season. The area MO-

s had lowest overall CPUE relative to all other strata. The within-area weeklyCPUE results


mostly correspond to monthly patterns, but moderate fluctuations and occasional abrupt


changes in CPUE are apparent (S1 Fig). Although the weekx area model is technically a better


fit to the data, the broader month time-scale provides larger, more representative sample sizes


(both for fisheries sampling and GSI) and balances the effect ofoutlier weeks on CPUE results.


Effect ofnon-retention and retention sampling technique on CPUE. An overall effect of


fisheries sampling technique on catch rates was not strongly supported by statistical analyses


(Table 6, Fig 3). Only in the SF-n area was estimated mean CPUE significantly higher in the


retention than the non-retention fishery. Non-significant trends within the remaining four


areas were inconsistent: estimated CPUE was higher in the retention than non-retention fish-

ery in area FB, approximately equal within areas SF-s and MO-s, and lower in area MO-n. We


found no support (Chi-square = 0.0098, df= 1, p-value = 0.9211) for a significant difference


between sampling techniques as measured by the proportion ofsuccessful and unsuccessful


fishing days in the JulyMO-n, MO-s, SF-n, and SF-s fisheries data set. However, a greater
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proportion ofzero-catch days was identified for the FB/June non-retention than for the FB/


July retention fishery (Chi-square = 8.68, df= 1, p-value = 0.0032). Given the overall weak sup-

port effect offisheries sampling technique on catch we treat these two types ofdata as approxi-

mately equal in subsequent analyses.


Effect offisherman on CPUE. The model with fishermen effect as the only independent


variable (ΔAIC = -648, residual deviance = 2741 on 2401 degrees offreedom) was a slightly bet-

ter fit to the data than the week x area model (Table 5). The term fishermen effect was signifi-

cant on the model (ANOVA, p < 2.2e-16) but, in the majority ofcases (n = 131 of172), the


estimated CPUE among individual fishermen was not significantly different. For the 41 fisher-

men with statistically different CPUE, it was higher for 19 (uncorrected p-values from 0.0004


Table 3. Observed mean catch per unit effort (CPUE, vessel-day fishing effort).


Area May June July August September


NO 5.37 6.23 5.46 12.89 0.70


CO 4.17 3.71 2.20 2.94 2.13


KO 1 .26 1 .43 2.56 4.1 1


KC-n 1 .68 2.31 6.37 4.12


FB 10.1 1 3.38 5.27 4.44 6.30


SF-n 1 .54 1 .47 4.28 2.30 0.62


SF-s 1 .65 3.30 1.15 1 .97 1 .04


MO-n 0.31 0.40 4.60 2.85 1 .79


MO-s 0.24 0.34 0.45 0.53 1 .33


1 CPUE calculation exclude 8 samples (see text for details).


Observed mean CPUE calculated by dividing the numbers of legal-sized Chinook salmon encounters (Table 1 ) with vessel-days of fishing effort (Table 2).


Retention fishery sampling is indicated by bold, mixed retention/non-retention fisheries sampling by italic, and non-retention fisheries by regular text. Area


abbreviations (also see Fig 1 ): North Oregon Coast (NO), Central Oregon Coast (CO), Oregon Klamath Zone (KO), California Klamath Zone-north (KC-n),


Fort Bragg (FB), San Francisco north (SF-n) and south (SF-s), Monterey north (MO-n) and south (MO-s). Data were collected May–September 2010; no


data were collected during May in KO and KC-n.


doi:10.1371/journal.pone.0131276.t003


Table 4. Comparison between at-sea study and 2010 commercial fishery data.


Data categories At-sea study Commercial Fishery % At-sea study / Commercial fishery


N landed fish, OR 4,482 26,454 16.9%


N landed fish, CA 4,402 15,088 29.2%


N landed fish, total 8,884 41 ,542 21 .4%


Vessel effort, OR 1055 3428 30.8%


Vessel effort, CA 398 1 ,975 20.2%


Vessel effort, total 1 ,453 5,403 26.9%


Vessel-days effort excluding days with zero-catch 1 ,1 13 as above 20.6%


N participating vessels, OR1 78 370 21 .1%


N participating vessels, CA 63 215 29.3%


N participating vessels (retention only) 141 585 24.1%


CPUE (legal-sized fish/vessel-day effort) 6.1 1 7.69 n/a


CPUE (excluding zero-catch days) 7.98 n/a n/a


1 Includes Astoria.


Comparison between the 2010 Oregon (OR) and California (CA) at-sea study and the commercial Chinook salmon troll fishery: numbers (N) of landed fish,


vessel-effort measured as N days fished, N vessels that participated in this study and the commercial fishery, and catch per unit effort (CPUE, vessel-day


fishing effort). Commercial fisheries data included landings south of Cape Falcon, OR, from May–August 2010 and excludes State Fall area fisheries.


doi:10.1371/journal.pone.0131276.t004
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to 0.0488) and lower for 22 (uncorrected p-values 0.0000 to 0.0400), relative to the arbitrarily


set reference required by the model. The modest differences among fisherman CPUE suggests


that differences among fisherman ability has limited consequences for CPUE-based abundance


estimates at the scale measured here.


Table 5. Models of catch per unit effort.


Model Model Terms AIC or (ΔAIC) Residual Deviance Deviance decrease Deviance decrease p-value


Null 1 1842 2760 on 2579 df


Month x Area (- 475) 2741 on 2537 df


Month 20.3 0.0005


Area 279 < 2.2 e -1 6


Month x Area 333 < 2.2 e -1 6


Week x Area (- 637) 2719 on 2415 df


Week 128 < 2.2 e -1 6


Area 302 < 2.2 e -1 6


Week x Area 682 < 2.2 e -1 6


Log-linear negative binomial models (CPUE ~ time x area) were used to evaluate the explanatory power of terms “time” and “area” and a term for their


interaction on estimated mean catch per unit effort (legal-sized fish encounters per vessel-day fishing effort). Model fit was assessed by calculating the


Akaike Information Criteria (AIC) score for a null model and evaluating the change in AIC score (deltaAIC, ΔAIC) for a model with terms. An ANOVA


model was used to determine if each model term was a significant effect.


doi:10.1371/journal.pone.0131276.t005


Fig 2. Mean catch per unit effort and 95% confidence intervals. Mean catch per unit effort (CPUE) was modeled for nine area strata using a negative

binomial model CPUE ~ month x area. CPUE is the numberof legal-sized fish caught per vessel-day fishing effort. Area abbreviations (also see Fig 1 ): North

Oregon Coast (NO), Central Oregon Coast (CO), Oregon Klamath Zone (KO), California Klamath Zone-north (KC-n), Fort Bragg (FB), San Francisco north

(SF-n) and south (SF-s), Monterey north (MO-n) and south (MO-s).


doi:10.1371/journal.pone.0131276.g002
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Comparison between genetic assignments to CWT recoveries

Genetic stock assignments were mostly concordant with stock oforigin as identified by recov-

ery ofCWTs from fish in OR (51 total, S4 Appendix). Correct genetic assignment to region of


origin was made for 35 ofthe 38 fish (92%) that met the posterior probability criteria ( 90%).


Table 6. Comparison of catch per unit effort (CPUE) for non-retention and retention fisheries sampling techniques.


Estimated Model Coefficients Negative Binomial Model Results


Area Fishery N days fishing Mean Lower CI Upper CI Std. Error z value p-value


FB Non-retention 47 3.38 2.24 5.09 (Intercept) 0.208 5.847 5.00 e-09


Retention 83 5.14 3.81 6.94 Fishery R 0.259 1 .622 0.105


SF-n Non-retention 32 1 .44 0.83 2.48 (Intercept) 0.278 1 .307 0.191


Retention 57 6.04 4.21 8.66 Fishery R 0.333 4.306 1 .66 e-05


SF-s Non-retention 38 1 .24 0.77 1 .99 (Intercept) 0.247 0.862 0.389


Retention 45 1 .15 0.74 1 .80 Fishery R 0.338 -0.192 0.848


MO-n Non-retention 22 6.27 4.09 9.62 (Intercept) 0.218 8.419 < 2 e-1 6


Retention 59 4.05 3.08 5.32 Fishery R 0.258 -1 .692 0.091


MO-s Non-retention 10 0.40 0.09 1 .82 (Intercept) 0.775 -1 .1 82 0.237


Retention 18 0.39 0.12 1 .21 Fishery R 0.969 -0.029 0.977


Comparison between CPUE (vessel-day fishing effort) for individual areas sampled using non-retention and retention techniques. Difference in CPUE was


evaluated using a log-linear negative binomial model, rejecting the null hypothesis of no difference between CPUE at a probability of p < 0.05 (Fishery R;


shown in bold). In areas San Francisco (SF-n, -s) and Monterey (MO-n, -s) the July 1–4 and 8–1 1 retention fishery was compared to the July 12–31 non-

retention fishery. For area Fort Bragg (FB), the retention fishery conducted on July days 1–4, 8–1 1 , and 15–29 was compared to the June non-retention fishery.


doi:10.1371/journal.pone.0131276.t006


Fig 3. Mean catch per unit effort (CPUE, vessel-day fishing effort) for non-retention and retention fisheries sampling. CPUE was compared within

each of five sampling areas: Fort Bragg (FB), San Francisco north (SF-n) and south (SF-S), Monterey north (MO-n) and south (MO-s). ForFB, the June/non-
retention fisherywas compared to the July/retention fishery. For remaining areas, the July 1–4 and 8–1 1 retention fishery was compared to non-retention

sampling conducted over the remainder of July. Mean CPUEs and 95% confidence intervals were calculated using a log-linear negative binomial model. The

null hypothesis of no difference between CPUE for retention fishery is rejected at a probability of z > .0.5, denoted by *.


doi:10.1371/journal.pone.0131276.g003
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Seven reporting regions were represented in the 38 fish sample, with 100% correct allocation to


five (CA Central Valley fall, Lower Columbia fall, Mid Columbia Tule, Rogue, and Upper


Columbia summer/fall stocks) ofthese seven regions. The Snake River fall hatchery stockwas


represented by seven fish, five ofwhich correctly assigned and two ofwhich mis-assigned to


Deschutes fall and N. Puget Sound reporting units. The third mis-assigned fish was a N. OR


Coast fish that allocated to the Mid ORCoast reporting units. No tagged fish were available for


comparison in CA, but the concordance rate between assignments with the SNP baseline and


CWT recoveries was 98.95% for over 1,000 fish port sampled from CA fisheries in 2010 [30].


Stock richness, distribution and CPUE-based abundance patterns

Stock richness was highest in areas sampled to the north and trended downward to the south


(Fig 4). Nearly 1/3 ofthe 22 stockgroups encountered (n = 7) originated from the Columbia


River (Columbia/Snake stock complex). Those stocks were distributed primarily to the north,


and had SSCPUEs that decreased towards the end ofthe sampling season. The CA Central Val-

ley fall stockwas widely distributed, but showed transient peaks ofabundance in areas FB and


KC-n. This was the only stockpresent across nearly all sampled strata, and its SSCPUE values


were approximately equal to or greater than most ofthe other stocks. Stocks originating from


near the OR-CA border (e.g., Rogue, Klamath and CA Coastal) tended to have higher


SSCPUEs in areas proximal to their natal river mouths (KC-n, FB, SF-n). The CA Central Val-

leywinter stockwas unique in that it was detected only in southern sampling areas, showing a


slight increase in SSCPUE during the month ofSeptember. Spatial and temporal patterns in


SSCPUE can be inferred from Fig 4, but results are more easily interpreted when visualized as


log-CPUE contour plots (Fig 5). Peaks in CPUE are shown as warm colors (“hot spots”), while


areas with lowCPUE use cooler colors (green to blue). Comparisons between the all-stock and


individual stockpanels reveal which stocks contributed to areas ofhigh CPUE. The contour


plot patterns for SSCPUE and stock composition correspond fairlywell for stocks with limited


distributions, but correspondence is reduced for stocks (e.g., CA Central Valley fall) that are


broadly distributed. The contours between KO and KC-n /Maydoes not reflect stock distribu-

tion, as the contour plot smoothing algorithm fills in missing data.


Correlations between stock composition data and SSCPUE

The measures ofstock composition and SSCPUE for the all-stockdata set were significantly


correlated when evaluated over the full range ofvalues but, at fairly low threshold points


( 17.32% stock composition), Kendall’s τ values decreased and p-values increased to non-sig-

nificant levels (Table 7). Scatterplots for all stocks (Fig 6a) and five individual stocks—CA Cen-

tral Valley fall, Rogue, Klamath, CA Coastal, and Columbia/Snake River complex (Fig 6b–6f)


—show that spread between data points becomes greater as each measure increased. For the


latter four stocks, the spread between points is more prevalent across the SSCPUE than stock


composition axis. The dominant stock in the all-stock data set, CA Central Valley fall (identi-

fied by comparing Fig 6a and 6b), was distinguished bywidely fluctuating stock composition


and SSPUE measures. This was the only stock for which Kendall’s τ correlation analysis failed


to show support for an association between SSCPUE and stock composition over the entire


range ofvalues. Stock composition estimates for this stock ranged from < 15% (e.g., in NO/


Mayand June; KO/July, September) to > 90% in some ofthe southern mixed stock fishery


samples (e.g., SF-s/August, September; MO-n/July; S2 Appendix) despite relatively low


SSCPUE values in those regions (Fig 4, S3 Appendix). The inclusion ofsamples collected from


areas characterized bywide differences in stock richness was a driving factor in the discord


between stock composition and SSCPUE values.
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Fig 4. Log stock-specific catch per vessel day of fishing effort. Stock-specific catch per unit effort was sampled for 22 stocks encountered in nine area

strata sampled May—September, 2010. Vertical green (retention) and magenta (non-retention) bars on left axis shows effort in total days fished. Stocks are

listed by north to south orderof natal rivers. Sample area abbreviations (also see Fig 1 ): North Oregon Coast, NO; Central Oregon Coast, CO; Oregon

Klamath Zone, KO; California Klamath Zone north, KC-n; Fort Bragg, FB; San Francisco north, SF-n; San Francisco south, SF-s; Monterey Bay north MO-n;

and MontereyBay south, MO-s. Sampling was not conducted during the month of May in areas KO and KC-n.


doi:10.1371/journal.pone.0131276.g004
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Fig 5. Contour plots ofChinooksalmon log-catch per unit effort and genetic stockcomposition. Log catch per vessel-day fishing effort (CPUE) (a–d)

and stock composition estimates (e–h) are presented for nine area (y-axis) and five month (x-axis) strata. Results are shown for all stocks (CPUE only), and

for stock groupings Columbia River/Snake complex, Klamath, and California Central Valley fall. See Fig 1 and text for area abbreviations and sampling

details. No sampling was conducted in KO/May and KC-n/May and KC-s, all season.


doi:10.1371/journal.pone.0131276.g005
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Discussion


In this study, we provide the first comprehensive assessment offine-scale, geo-referenced


ocean distribution patterns among genetically distinct Chinook salmon stocks as theymigrate


within the southern California Current large marine ecosystem. Such a perspective enables


unique insights into dynamic spatial and temporal shifts ofrelative abundance, as indexed by


CPUE, ofmultiple stocks at a scale that encompasses most ofthe range oftypical migratory


patterns for south-migrating Chinook salmon stocks. The individual-based stock-, region- and


time-specific approach presented here makes significantlymore dense and focused informa-

tion available for the study ofChinook salmon migration behavior than previously possible


using physical tags (e.g., CWTs) or genetic stock composition data alone [43–45].


The SSCPUE and stock composition estimates are two complementarymeasures for track-

ing fish distribution. Stock composition characterizes the relative proportion ofstocks present


in a single sample, while SSCPUE provides a measure ofabundance for each ofthe stocks


across fisheries. While stock composition values are likely to be poor representatives ofrelative


stockabundance estimates, scientific literature has not previouslydescribed or statistically eval-

uated the degree ofdiscord between these two measures using empirical data. Using the non-

parametric Kendall’s τ, the two indices were significantly correlated when all stocks were con-

sidered, but the correlation disappeared when locally rare stocks were excluded. Rare stocks


inflate τ values because their stock composition and SSCPUE measures will always be ranked


low relative to the full range ofavailable values. Moreover, rare stocks exert little influence on


other stocks’ composition estimates and have no effect on SSCPUE. Discord between SSCPUE


and stock composition indices was strongly influenced by comparison among samples col-

lected from areas with wide differences in stock richness. Results from the CA Central Valley


fall stock best exemplify this point: in southern areas, the composition values were dispropor-

tionately high, despite lowabundance, simply because fewer other stocks were present than in


the north. While it maybe intuitive to equate high stock composition values with high abun-

dance, that was clearlynot the case for the CA Central Valley fall stock. Because SSCPUE is


unbiased byother stocks present in fishery samples, it is more easily interpreted across multiple


time-area strata. Thus, SSCPUE is a superior measure for tracking movements ofindividual


stocks or comparing local abundance across time-area strata.


Table 7. Correlation analyses for paired genetic stockcomposition and stock-specific catch per unit effort (SSCPUE) values.


Full data set Threshold data set


τ p-value τ p-value min. % stock composition


All stocks 0.739 0.000 0.1 49 0.06 17.32


California Central Valley fall 0.1 89 0.081 n/a n/a 0.00


Rogue 0.659 <0.001 0.385 0.076 16.03


Klamath 0.721 0.000 0.360 0.1 78 1 2.47


CA Coastal 0.568 <0.001 0.500 0.1 08 9.89


Columbia/Snake complex 0.752 0.000 0.454 0.062 1 2.91


Strengths of associations, evaluated using Kendall’s τ correlation coefficients, between paired genetic stock composition and stock-specific catch per unit


effort (SSCPUE, vessel-day effort) values. Data were collected from nine month-area strata sampled May–September, 2010. The full data set includes all


non-zero pairs of data, in contrast to the threshold data set which includes only pairs of data above a minimum stock composition value (min % stock


composition). The threshold data set represents the stock composition threshold point above which that value failed to correlate (p-values > 0.05) with


SSCPUE. Analyses were performed using data from all stocks and on an individual-stock basis for five stocks (or stock groupings) that represent a range


of sample collection conditions.


doi:10.1371/journal.pone.0131276.t007
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Some ofthe patterns ofstockdistribution we showare similar to trends known from CWT


data [44], but SSCPUE data allows us to identify a greater number ofstocks [9,30,46] atmuch


higher spatial and temporal resolution than typical CWT dock-side sampling programs. Our


results showa clear increase in stock richness from south to north, a trend that persisted even


with low sample sizes for some time-area strata (e.g., KO/July). The greater number ofstocks


observed in northern sampling areas reflects overlap in distributions ofstocks that breed to the


north (e.g., Columbia River, Puget Sound, and some Canadian stocks) and to the south (e.g.,


California Central Valley fall, Klamath, and Rogue) ofthe sampled area (Fig 4). The contour


Fig 6. Scatterplots of paired stock-specific catch per unit effort (SSCPUE) and stockcomposition measures. Data are presented on a month-area

basis for all stocks (a) and individual stocks (b) California Central Valley fall, (c) Klamath, (d) Rogue, (e) California Coastal, and (f) Northern California/

Southern Oregon Coastal.


doi:10.1371/journal.pone.0131276.g006
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plot results provide a simplified picture ofstockdistributions, and aid contrasting SSCPUE and


stock composition indices. For example, the Central Valley fall SSCPUE (Fig 5d) and stock


composition (Fig 5g) contour plots showdistinctly different patterns. Visualizations such as


these could help fisherymanagers and fishermen develop directed fishing strategies. An indi-

vidual stock “hot spot”, such as the one observed for the FB/May stratum, could be targeted by


fishermen ifthe predominant stock is one that can withstand fishingpressure. Or, perhaps fish-

ing could be shifted away from a given area ifthe hot spot represents an aggregation offish for


which conservation is a concern. A web portal (FishTrax, fp.pacificfishtrax.org/portal) was cre-

ated for this study to generate customizable, stock-specific catch and effort distribution maps,


with data being continually updated during the season. This portal is available to fishermen,


managers, and the general public.


Commercial fishery restrictions necessitated the use ofnon-retention sampling for most of


the season in California, and all areas in September. Determining whether the CPUE ofreten-

tion and non-retention sampling differs is important because CPUE-based estimates offish


density assume that fish contact rates are proportional to abundance. Fluctuations in catch can,


however, occur from differences in fleet efficiency, the environment, and dynamics ofthe fish


population [47]. We predicted that CPUE ofretention fisheries would be higher than non-

retention fishery because incentives to catch fish are greater for fishermen who are able to


retain and sell their catch (non-retention samplers were compensated a fixed rate per day).


Additionally, fishermen cooperate amongst themselves by sharing location and catch informa-

tion; that type ofinformation is reduced in non-retention fisheries because fewer fishermen are


on the water searching for fish. Our analyses show that CPUE and stock compositions from


non-retention fisheries were consistent with similar retention fisheries. The non-retention


sampling enabled continuity offishery catch data while reducingmortality rates on sampled


fish. Only lack ofsampling in KO and KC in May created discontinuities in the data, but even


small gaps such as those can render interpretation ofcontour plot data more difficult. Overall,


we successfully characterized stockdistribution across a vast swath ofocean and demonstrate


that non-lethal sampling in the ocean is feasible for assessing distributions and abundance.


Current fisherymodels for stock assessment and harvest management are built around a


CWT sampling program and monitoring ofadults returning to freshwater. The data provided


byGSI techniques differ substantially from those provided by the CWT program, including in


statistical properties (sources oferror and uncertainty), ability to determine brood year (age),


and representation ofstock aggregations. Statistical uncertainty in salmon models arises from


expansion oftag recoveries, mark rates, and incorporation ofsampling and fishery effort. For


CWT-based models, expansions are based on fewobservations and lowmark rates, leading to


high uncertainty in the CWT-based estimates ofthe stocks they are intended to represent. GSI


estimates, in contrast, provide stock-origin data for nearly every sampled fish, eliminating the


need for a mark-rate expansion factor. That, coupled with at-sea sampling which yields pre-

cisely known effort, further reduces statistical uncertainty. However, for GSI, the accuracy of


stock-origin is substantially different from the CWT system. For CWT-marked fish, stock-ori-

gin accuracy is near-100% and age-cohort information is provided. In contrast, correct assign-

ment ofindividuals to populations byGSI depends on the genetic baseline’s ability to


discriminate among stocks (e.g., [38,48]), and a 90% correct assignment threshold [7,8] is com-

monly used for delineation ofbaseline populations. Genetic baseline power is routinely


assessed through 100% mixture simulations, leave-one-out tests ofproportional allocations,


and empirical tests ofGSI-CWT concordance [8,30,38]. Our GSI-CWT concordance test is


illustrative ofvariations among stock-assignment accuracy: the majority offish were correctly


allocated to their reporting groups, but the Snake River fall stock, in particular, mis-allocated to


other reporting units, consistent with findings ofprevious power analyses [40]. We were able
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to achieve a moderate level ofsampling relative to the commercial fishery (e.g., > 20%), similar


to the target sampling rate for CWTs (ofwhich only a small proportion actually contain tags).


GSI-based sampling programs would need to be designed to collect randomized samples, or at


least to distribute sampling over space and time, for the data to be used in the same way as


those derived from the CWT program.


Most fisheries models rely on age-specific cohort reconstruction data obtained from CWTs,


butGSI does not provide age information directly. Aging can be achieved concurrently through


analysis ofthe scales ofsalmon that are also genetically identified, although this is slow, expen-

sive, and can be difficult for maturing fish, as they start to reabsorb their scales. This obstacle


can be overcome through the use ofpedigree-based genetic methodologies (i.e. intergenera-

tional, or parentage-based, tagging) that yield cohort and stockdata similar to those obtained


through the CWT program [49,50]. Both CWTs and genetic tagging require access to a large


and known proportion ofthe juvenile cohort or spawners in a stock, respectively, so are gener-

ally only applied to hatchery stocks. However, GSI and genetic tagging can use the same geno-

type data: in that case, GSI can be used to identify natural stocks as well as hatchery stocks, and


the need to assign “indicators” for predominantly natural stocks is eliminated. Using data that


overlapped with those from this study, Satterthwaite and colleagues [51] inferred ocean distri-

bution from spatial variation in CPUE to evaluate the performance ofthe data-rich Klamath


fall stock as a proxy for the data-poor (unmarked) California Coastal stock. The two stocks had


similar distributions early in the fishing season, but diverged late in the summer. There are no


CWTs used in the California Coastal Chinook stock, so this analysis was only possible with


GSI data ofthe type described here.


Conclusions and Future Applications


Coordinated, geo-referenced sampling on a large spatial and temporal scale enabled high-reso-

lution assessment ofstock-specific abundance and distribution ofmigrating Chinook salmon


in the California Current marine ecosystem. Stock richness was highest in the northern sam-

pling areas and declined to the south. A limited number ofstocks were encountered in the


southern limits ofChinook salmon’s ocean range. Comparison ofstock composition and


SSCPUE estimates indicate these measures diverge for stocks present at moderate abundance


levels in a fishery. Using effort-adjusted abundance estimates, such as SSCPUE, for quantifica-

tion ofstock distribution yields information that is comparable across fishery samples. In con-

trast, stock composition results inconsistently corresponded to abundance measures and are


not comparable across fishery samples. We show that CPUE ofretention and non-retention


fisheries was similar and non-retention sampling therefore holds potential for unbiased tests of


stock abundance. Conducting test fisheries for pre- or in-season assessments ofSSCPUE could


lead to strategies that allowmaximum sustainable harvest while achieving conservation objec-

tives. While GSI data are not without limitations, the incorporation ofCPUE-based stock


abundance into fisheries management (and other disciplines) remains a promising and exciting


field ofopportunity. This study provides proofofconcept for implementing at-sea GSI sam-

pling into a coast-wide program for fisheries applications.


Supporting Information
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