ROC on LTO BiOp and Preliminary Effects Analysis Briefing "Cracking the ROC" Barry Thom Briefing April 30, 2019 # **Action Components** – As proposed by Reclamation | Core Operations | Scheduling
(Formerly called Adaptive
Management) | Collaborative Planning
(Formerly called Adaptive
Management) | | | |--|---|--|--|--| | The action is part of the Core
Water Operations of the CVP
and SWP | Agencies and water users provide recommendations to Reclamation on scheduling and shaping specific flow actions | Agencies and water users work collaboratively to define, plan, and implement an action. | | | | e.g., OMR Management | e.g, American River Pulse
Flows | e.g, Stanislaus River Spawning and Rearing Habitat Restoration | | | | "Site-Specific" Although many components described programmatically | "Site-Specific" Although mostly described programmatically | "Programmatic" Although there are areas where we have enough information to quantify effects | | | Overview of the System and Action Area Action Area for SRKW: All nearshore coastal waters within their range in California, Oregon, and Washington, not including Puget Sound Action Area for salmonids and green sturgeon: All reservoirs and river systems in the divisions covered in the biop; the Delta; Suisun Marsh; San Francisco Bay ### **Species and Critical Habitat** #### Sacramento River winter-run Chinook salmon and Critical Habitat Endangered #### Central Valley spring-run Chinook salmon and Critical Habitat Threatened #### California Central Valley steelhead and Critical Habitat Threatened #### Southern DPS Green Sturgeon and Critical Habitat Threatened #### **Southern Resident Killer Whale** Endangered # **General Approach Model (Species)** Page 3 #### **Environmental Baseline** #### **Shasta Division** - · Winter-run - · Spring-run - Steelhead - · Green Sturgeon # **Trinity Division:** Clear Creek - · Spring-run - Steelhead # **Shasta Division: Action Components** | Core Operations | Scheduling | Collaborative Planning | |---|-------------------|---| | Seasonal Operations | Spring Pulse Flow | Spring Management of Spawning Locations | | Shasta Cold Water Pool
Management | | Cold Water Management Tools (e.g.,
Battle Creek Restoration, Intake Lowering
near Wilkins Slough, Shasta TCD
Improvements) | | Fall and Winter Refill and Redd Maintenance | | Spawning and Rearing Habitat Restoration | | Rice Decomposition
Smoothing | | Small Screen Program | | Operations with Shasta Dam Raise | | Winter-Run Conservation Hatchery Production | | | | Adult Rescue | | | | Juvenile Trap and Haul | #### **Shasta Uncertainties** - The description of the PA (e.g., lack of detail in action component explanation) - The characterization of current operations, COS, and the PA in physical modeling - The characterization of biological processes in biological modeling (e.g., Anderson hatch model is novel and untested) - The likelihood that actual operations will adhere to the proposed operations either as modeled or as described in the PA. Moving between Tiers # **Figures Depicting Shasta Uncertainties** Depiction of temperature target operations according to Reclamation's Tiered approach. From ROC LTO BA Characterization of Tier 2 CCR daily average temperature backstop (green line) using historical data. Provided by NMFS SWFSC ### **Figures Depicting Shasta Uncertainties** Proportion of monthly flows below Keswick, as either north-of-Delta deliveries to CVP Settlement Contractors, North-of-Delta deliveries to CVP Agricultural Service Contractors, or Non-Contract Keswick releases. # Temperature-dependent egg mortality by Tier # Significant Shasta Effects to Individuals: Winter-run | Action
Component | Stressor/Factor | Life Stage
(Location) | Life Stage
Timing (Work
Window
Intersection) | Individual Response
and Rationale of Effect | Severity of
Stressor | Proportion of
Population
Exposed | Frequency of
Exposure | Magnitud
e of
Effect | Weight of Evidence | |---|---|--|---|---|-------------------------|---|--|----------------------------|--| | Tiers 1-4:
Shasta Cold
Water Pool
Management | Water
Temperature | Eggs/Fry
(Keswick Dam -
CCR gauge) | May - October
(May 15 -
October) | Temperatures > 53.5°F decrease egg survival | Lethal | 1: Medium
(23.3% of days)
2: Medium
(33.1% of days)
3: Medium (65%
of days)
4: Large (86%
of days) | 1: Medium
(68% of
years)
2: Low (17%
of years)
3: Low (7% of
years)
4: Low (7% of
years) | High | High: Supported by multiple scientific and technical publications that include quantitative models specific to the region and species. | | Fall and Winter
Refill and
Redd
Maintenance | To build storage
for the
subsequent year
class | Juveniles (Upper
Sacramento
River) | July - December
(October,
November) | Decreased month-to-
month flows cause
stranding and
decreased floodplain
inundation, side-channel
habitat. | Lethal | Medium (<50% of the population) | Low (20% of years) | High | Medium | | Operation of a
Shasta Dam
Raise | NA | NA | NA | None. Reinitiation triggers apply | NA | NA | NA | NA | NA | #### Delta - · Winter-run - · Spring-run - · Steelhead - · Green Sturgeon U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 15 # **Delta Division: Action Components** | Core Operations | Scheduling | Collaborative Planning | |--|------------|---| | Seasonal Operations | N/A | San Joaquin Basin Steelhead Telemetry Study | | Minimum Export Rate | | Sacramento Deepwater Ship Channel Food Study | | Delta Cross Channel Operations | | North Delta Food Subsidies/Colusa Basin Drain Study | | Agricultural Barriers | | Tidal Habitat Restoration | | Contra Costa Water District Rock Slough Operations | | Predator Hot Spot Removal | | North Bay Aqueduct | | Delta Cross Channel Gate Improvements | | Water Transfers | | Tracy Fish Facility Improvements | | Clifton Court Aquatic Weed Removal | | Skinner Fish Facility Improvements | | OMR Management | | Small Screen Program | | Tracy Fish Collection Facility Operations | | | | Skinner Fish Facility Operations | | | | Clifton Court Predator Management | U.S. Depa | rtment of Commerce National Oceanic and Atmospheric Administration NOAA Fisheries Page 16 | # Significant Delta Effects to Individuals: Winter-run | Action
Component | Stressor <u>/Fact</u>
<u>or</u> | Life Stage
(Location) | Life Stage Timing (Work
Window Intersection) | Individual Response
and Rationale of
Effect | Severity of
Stressor | Proportion of
Population
Exposed | Frequency of
Exposure | Magnitude of
Effect | Weight of Evidence | |--------------------------------|--|--|---|---|-------------------------|--|--|---|--| | DCC Gate
operations - | Routing | Juveniles -
Sacramento
River - Delta | Juvenile migration and rearing - Oct - April | increased mortality
due to routing into the
delta interior with
lower survival rates | lethal | medium - gates
open from Oct 1
through Nov 30,
typically closed Dec
1 through Jan 31.
Closed Feb 1
through May 20.
Estimated 50 % of
juvenile WR
population
emigrates by the
end of January | Variable
Low to high. DCC
gates infrequently
operated in
December and
January | High | High - There are a number of publications regarding the relative survival in various North Delta and Central Delta migratory routes; conclusions supported by modelling results. | | DCC Gate
operations - | Altered
Hydrodynamic
s downstream
of DCC
location | Juveniles -
Sacramento
River -Delta | Juvenile migration and rearing - Oct - April | Increased mortality
when gates are open
due to changes in
routing or transit time | minor to
lethal | High - opening of
gates reduces the
proportion of
riverine reaches
adjacent to the DCC
location. | High | High | High - There are a number of publications regarding the relative survival in various North Delta and Central Delta migratory routes; conclusions supported by modelling results. | | CVP/SWP South
Delta Exports | Altred
hydrodynamics
in south Delta/
routing | Juveniles -
Sacramento
River -Delta | Juvenile migration and rearing - Oct - April | Mortality or
decreases in
condition due to
migratory delays in
response to altered
hydrodynamics | Sub-lethal to lethal | Medium - | High- continual exports | High | Medium to High - effects of hydrodynamics well studied and modelled. Effects of hydrodynamics on salmonid migrations in south Delta less certain. | | CVP/SWP South
Delta Exports | Entrainment
and loss at the
south Delta
export facilities | Juveniles -
Sacramento
River -Delta | Juvenile migration and rearing - Oct - April | Loss is approximately
35% at the CVP and
84% at the SWP fish
salvage facilities | Sub-lethal to lethal | Small | High | Medium -
sustained high
frequency
exposure on
small proportion
of population | High - Numerous studies have evaluated the efficiency of the screening facilities, predation, as well as survival through the facilities | # Significant Effects to Individuals: Spring-run | Action
Component | Stressor | Life Stage
(Location) | Life Stage Timing | Individual Response and
Rationale of Effect | Severity of
Stressor | Proportion of Population
Exposed | Frequency
of
Exposure | Magnitud
e of
Effect | Weight of Evidence | |---|--|---|--|--|-------------------------|---|-----------------------------|---|---| | DCC Gate operations - | Altered
Hydrodynamics
downstream of
DCC location | Juveniles -
Sacramento
River -Delta | Juvenile migration
and rearing - Dec -
May | Increased mortality when gates are open due to changes in routing or transit time through interactions with changes in river flow and tidal influence downstream of DCC location and gate operations | minor to lethal | High - opening of gates reduces the proportion of riverine reaches adjacent to the DCC location; closing of gates extends the riverine reaches farther downstream. Entire season of emigration occurs with gates in either open or closed position. | High | High | High - There are a number of publications regarding the relative survival in various North Delta and Central Delta migratory routes; conclusions supported by modelling results. | | CVP/SWP
South Delta
Exports | Entrainment and
loss at the south
Delta export
facilities | Juveniles -
Delta | Juvenile migration
and rearing - Dec -
May | Loss is approximately 65% of
entrained fish at the CVP and
84% at the SWP fish salvage
facilities | Sublethal to lethal | small | High | Medium -
sustained
high
frequency
exposure
on small
proportio
n of
populatio
n | High - Numerous studies have evaluated the efficiency of the screening facilities, predation, as well as survival through the facilities | | South Delta
Agricultural
Barriers | transit times | Juveniles -
Sacramento
River -Delta | Juvenile migration
and rearing - Dec -
May | Delayed migration and increased transit times with potential for increased mortality due to increased exposure to predators | Sublethal to lethal | medium - includes SJR
experimental population | High | Medium-
high | Medium - several studies have indicated that the barriers increase transit time through the south Delta and increase predation risks. Timing of spring-run in the south Delta channels is well documented by salvage records. | # Significant Effects to Individuals: Steelhead | Action
Component | Stressor | Life Stage
(Location) | Life Stage Timing | Individual
Response and
Rational of Effect | Severity of
Stressor | Proportion of Population Exposed | Frequency of Exposure | Magnitude
of Effect | Weight of Evidence | |-----------------------------------|--|---|---|--|-------------------------|---|---|---|--| | DCC Gate operations | Routing | Juveniles-
Sacramento
River-Delta | Juvenile migration
and rearing – Nov
– June | increased mortality
due to routing into the
delta interior with
lower survival rates | sublethal -
lethal | medium - gates open from Oct 1 through Nov
30, typically closed Dec 1 through Jan 31.
Closed Feb 1 through May 20. Estimated 25%
to 50% of juvenile SH population emigrates by
the end of January. | Low. DCC
gates
infrequently
operated in
December and
January | High | High - There are a number of publications regarding the relative survival in various North Delta and Central Delta migratory routes; conclusions supported by modelling results. | | DCC gate operations | Transit times | Juveniles -
Sacramento River
-Delta | Juvenile migration
and rearing - Nov -
June | Increased mortality
due to increased
migration times with
concurrent increased
exposure to predators | sublethal to
Lethal | medium - gates open from Oct 1 through Nov 30, typically closed Dec 1 through Jan 31. Closed Feb 1 through May 20. Estimated 25% to 50% of juvenile SH population emigrates by the end of January. | Low. DCC
gates
infrequently
operated in
December and
January | High | Medium to High - Multiple
publications on relative survival
of Chinook salmon in North
Delta and Central Delta routes
but not steelhead; routing and
transit time conclusions
supported by modelling | | DCC gate operations | Altered
Hydrodynamics
downstream of
DCC location | Juveniles -
Sacramento River
-Delta | Juvenile migration
and rearing - Nov -
June | Increased mortality due to changes in routing or transit time through interactions with changes in river flow and tidal influence downstream of DCC location and gate operations | Minor to
lethal | High - opening of gates reduces the proportion of riverine reaches adjacent to the DCC location, closing of gates extends the riverine reaches farther downstream. Entire season of emigration occurs with gates in either open or closed position. | High | High | High - There are a publications on relative survival of Chinook salmon, but not steelhead in various North Delta and Central Delta migratory routes; hydrodynamic conclusions supported by modelling and physical testing results. | | CVP/SWP
South Delta
Exports | Entrainment and
loss at the south
Delta export
facilities | Juveniles - Delta | Juvenile migration
and rearing - Nov -
June | Loss is approximately
65% of entrained fish
at the CVP and 84%
at the SWP fish
salvage facilities | Sublethal to lethal | small (overall CCV population), medium to large for SJR baisn steelhead) | High | Medium -
sustained
high
frequency
exposure on
small
proportion of
population | High - Numerous studies have evaluated the efficiency of the screening facilities, predation, as well as survival through the facilities | | Increased
Exports | Entrainment and loss at the south Delta export facilities | Juveniles - Delta | SJ Basin
Steelhead
Emigration
April-May | Higher export
levels, increased
negative OMR
flows
No HORB/I:E | Sublethal to lethal | Majority of SJ Basin Steelhead U.S. Department of Commerce National Oceani | High
c and Atmospheri | High
c Administration | High – 6-year study, draft
report
 NOAA Fisheries Page 19 | #### Significant Effects to Individuals: Green Sturgeon No Medium to High or Highly Ranked Effects #### **Delta Uncertainties** - · Lack of trigger thresholds for spring-run and steelhead for the OMR. - Effectiveness of proposed OMR management actions. Instead of being protective, proposal leads to more risk and loss. - Impacts of increased April and May export levels. The effects may not be as straightforward as modeled, and may be compounded by the changes in the local hydrodynamics created by the increase in exports. - Vulnerability of San Joaquin River steelhead to the effects of no I:E ratio, no HORB during the emigration period. - Many elements of the PA description are vague. 6,000 acres of tidal habitat: we don't know where this will occur, what the success metrics will be, and how we will monitor effectiveness. Also, unclear how "risk assessments" will work for implementing protective actions and how or if NMFS will be involved. # Coastal Extent of the Action Area SouthernResident KillerWhales #### Significant Effects: Southern Resident Killer Whales - Overall, the productivity of CV Chinook salmon, especially the dominant fallrun population, appears to be decreasing over time. - There are fewer measures under the PA to minimize the impacts of operations on the non-ESA listed populations. - The potential benefits of proposed restoration activities that have been proposed are uncertain at this time and most are actually in the Environmental Baseline (previously consulted on) - For ESA-listed Chinook salmon ESUs in the Central Valley, we conclude that population level effects for ESA-listed species and critical habitats overall under the PA are significant across multiple VSP parameters, including abundance. - Reductions and limitations in the abundance of Chinook available as prey as a result of the PA will increase over time. # **Clear Creek: Action Components** | Core Operations | Scheduling | Collaborative Planning | |-------------------------------------|--|------------------------| | Seasonal Operations | Clear Creek Geomorphic
and Spring Attraction
Pulse Flows | N/A | | Whiskeytown Reservoir
Operations | | | | Clear Creek Minimum Flows | | | | Spring Creek Debris Dam | | | # Significant Clear Ck. Effects to Individuals: Spring-run | Action Component | Stressor | Life Stage
(Location) | Life Stage
Timing (Work
Window
Intersection) | Individual Response and
Rationale of Effect | Severity
of
Stressor | Proportion
of
Population
Exposed | Frequency
of Exposure | Magnitude of
Effect | Weight of
Evidence | |--|---|--|---|---|----------------------------|---|--------------------------|------------------------|--| | Clear Creek Summer Temp (60 F
or less June 1-Sept 15) and Fall
temp (56 F or less Sept 15-Oct
31) to compliance point at river
mile 11 | Water Temperature:
Water warmer than
compliance. Increased
risk downstream of
compliance point and in
critical year types. | Holding and
spawning adult
spring-run river
mile 18 to 3 | June-Sept 15 | Exposure to MDT >60 F cause stress, reduced fecundity, prespawn mortality, reduced life history diversity. Variable depending on holding locations and exceedence rate. | Sub-lethal
and Lethal | Medium | Medium | Medium-High | Medium:
temperature
monitoring data,
effects on current
populations. | | Clear Creek Summer Temp (60 F
or less June 1-Sept 15) and Fall
temp (56 F or less Sept 15-Oct
31) to compliance point at river
mile 11 | Water Temperature: Water warmer than compliance point. Increased risk downstream of point and in critical year types. | Spawning
spring-run adults
and egg/alevins
river mile 18 to 3 | Sept 15-Oct | Exposure to MDT > 56F
causes reduced fecundity,
stress, disease prespawn
mortality, introgression
with fall run during
spawning | Sub-lethal and Lethal | Medium | Medium | Medium-High | Medium:
temperature
monitoring data,
effects on current
populations. | | Clear Creek Summer Temp (60 F
or less June 1-Sept 15) and Fall
temp (56 F or less Sept 15-Oct
31) to compliance point at river
mile 11 | Water Temperature,
Spawning Habitat
Availability: Temperature
compliance point location. | Holding and
spawning adult
spring run below
compliance
point river mile
11 to 3 | June-Oct | Exposure to MDT >60 F
causes reduced fecundity,
stress, disease prespawn
mortality, intergression
with fall run during
spawning | Sub-lethal and Lethal | Medium | Medium | Medium-High | High, water
temperature
monitoring, field
observations | | Clear Creek Summer Temp (60 F
or less June 1-Sept 15) and Fall
temp (56 F or less Sept 15-Oct
31) to compliance point at river
mile 11 | Water Temperature:
Suboptimal water
temperature criteria for
spawning. | Spawning
spring-run adults
and egg/alevins
river mile 18 to 3 | Sept-Oct | 56 F is to be suboptimal for survival of incubating eggs | Sub-lethal and Lethal | Large | Medium | Medium-High | Medium,
temperature
monitoring, field
observations | #### Significant Clear Ck. Effects to Individuals: Steelhead | Action
Component | Stressor | Life Stage
(Location) | Life Stage Timing (Work
Window Intersection) | Individual Response and
Rationale of Effect | Severity
of
Stressor | Proportion of
Population
Exposed | Frequency
of Exposure | Magnitude of
Effect | Weight of
Evidence | |---------------------|-----------------|-------------------------------|---|---|----------------------------|--|--------------------------|------------------------|-----------------------| | Geomorphic flows | Flow Conditions | Spawning adult steelhead. Egg | Jan-April | Redd scour, infiltration of fines. Steelhead Redds normally exist in | Sub-lethal and Lethal | High | Medium | Medium-High | Medium | #### **Clear Creek Uncertainties** - Ability to meet water temperature criteria during the spring-run spawning period (based on results from current monitoring data and modeling). - That proposed pulse flows/mechanical channel maintenance will provide adequate geomorphic benefit to maintain habitat. This is based on lack of details in PA of mechanical maintenance, and water year type restrictions. - If water temperature regime is appropriate for driving anadromy in *O.mykiss* population. # **American Division** Steelhead # **American Division: Action Components** | Core Operations | Scheduling | Collaborative Planning | |---|-------------------------------|---| | Seasonal Operations | American River
Pulse Flows | Spawning and Rearing Habitat Restoration | | 2017 Flow Management
Standard Releases and
"Planning Minimum" | | Drought Temperature Facility Improvements | | | | Nimbus Fish Hatchery HGMP | #### Significant American Effects to Individuals: Steelhead | Action
Component | Stressor | Life Stage
(Location) | Life Stage Timing
(Work Window
Intersection) | Individual Response and Rationale of Effect | Severity
of
Stressor | Proportion of
Population
Exposed | Frequency of Exposure | Magnitude of
Effect | Weight of
Evidence | |----------------------------------|--|--|--|---|----------------------------|--|-----------------------|------------------------|--| | Seasonal
Operations | Folsom/Nimbus
releases – flow
fluctuations | Spawning
Primarily
upstream of Watt
Ave. area | Late-Dec early Apr | Redd dewatering and isolation prohibiting successful completion of spawning | lethal | small | medium | high | high | | Nimbus
Hatchery
Management | Nimbus Hatchery – hatchery O. mykiss spawning with natural-origin steelhead | Spawning
Primarily
upstream of Watt
Ave. area | Late-Dec early Apr. | Reduced genetic diversity. Garza and Pearse (2008) showed that genetic samples from the population spawning in the river and the hatchery population were "extremely similar". | subletha
I | small | high | high | High,
HSRG Report,
Draft HGMP,
Garza and
Pearse (2008) | | Seasonal
Operations | Water temperatures warmer than life stage requirements, particularly occurring upstream of Watt Ave. during June through September | Juvenile rearing
Primarily
upstream of Watt
Ave. area | Year-round | Physiological effects - increased susceptibility to disease and predation. Visible symptoms of thermal stress in juvenile steelhead are associated with exposure to daily mean water temperatures above 65°F, With the exception of 2005, from 1999 through 2007, daily mean water temperatures at Watt Avenue from August through September were warmer than 65°F for approximately 81 percent of the days, and during 2001, 2002, 2004, 2006, and 2007, water temperatures were often over 68°F (figure 30a). | subletha
I | high | high | high | high | #### **American River Division Uncertainties** - Reliance on an undefined planning minimum (i.e. end-of December storage), and undefined future operations and resultant water temperatures - Adherence to the planning minimum and effectiveness in meeting temp standards - The level of detail provided in the BA for the "Drought Temperature Management" measure # East-side Division: Stanislaus and Lower San Joaquin - Steelhead - · Spring-run # **East-side Division (Stan): Action Components** | Core Operations | Scheduling | Collaborative Planning | |---|---------------------------------|--| | Seasonal Operations | Stanislaus River
Pulse Flows | Spawning and Rearing Habitat Restoration | | Stanislaus River Stepped Release Plan | | Temperature Management Study | | Alteration of Stanislaus DO Requirement | | | #### **Stanislaus Uncertainties** - **Evaluation of temperature-related effects:** Model outputs of monthly average temperature not directly comparable with 7DADM-based temperature suitability criteria. The approach underestimates adverse effects to species. - **Feasibility of restoration targets:** Proposed 4,500 tons of gravel per year and 50 acres of floodplain and side-channel rearing habitat by 2030 unlikely given recent rate of restoration over past 10 years. # Significant Effects to Individuals (Stan): Steelhead | Action
Component | Stressor | Life Stage
(Location) | Life Stage
Timing (Work
Window
Intersection) | Individual Response and
Rationale of Effect | Severity of
Stressor | Proportion of
Population
Exposed | Frequency
of Exposure | Magnitude
of Effect | Weight of
Evidence | |---|--|---|---|--|---|--|--------------------------|------------------------|-----------------------| | Seasonal
operations and
Stepped
Release Plan | Contaminants (particularly
dormant sprays) from land
uses made possible by
operations | Juvenile rearing
Goodwin Dam
to Orange
Blossom | Year round | Reduced food supply; suppressed growth rates, etc | Sublethal and indirectly lethal via predation | Medium | High | Medium to
High | Medium | | Seasonal
operations and
Stepped
Release Plan | Lack of overbank flow to inundate rearing habitat | Juvenile rearing
Goodwin Dam
to Orange
Blossom | Year round | Reduced food supply; suppressed
growth rates; starvation; loss to
predation; poor energetics; indirect
stress effects, smaller size at time
of emigration; | Sublethal and indirectly lethal via predation | Medium | High | Medium to
High | Medium | | Seasonal
operations and
Stepped
Release Plan | Reduction in rearing
habitat complexity due to
reduction in channel
forming flows | Juvenile rearing
Goodwin Dam
to Orange
Blossom | Year round | Reduced food supply; suppressed
growth rates; starvation; loss to
predation; poor energetics; indirect
stress effects, smaller size at time
of emigration; | Sublethal and indirectly lethal via predation | Medium | High | Medium to
High | Medium | | Seasonal
operations and
Stepped
Release Plan | End of summer water
temperatures warmer than
life history stage
requirements | Juvenile rearing
Goodwin Dam
to Orange
Blossom | Year round,
most acute
July-
September | Metabolic stress; starvation; loss to predation; indirect stress effects, poor growth; | Sublethal and indirectly lethal via predation | Medium | Medium | Medium to
High | Medium | | Seasonal
operations and
Stepped
Release Plan | End of summer water
temperatures warmer than
life history stage
requirements | Juvenile rearing
Goodwin Dam
to Orange
Blossom | Year round,
most acute
July-
September | Metabolic stress; starvation; loss to predation; indirect stress effects, poor growth; | Sublethal and indirectly lethal via predation | Medium | Medium | Medium to
High | Medium to
High | | Seasonal
operations and
Stepped
Release Plan | Predation by non-native fish predators because rearing habitat is lacking | Juvenile rearing
and out-
migration
Stanislaus River | All year with increase Feb- | Juvenile mortality; Reduced juvenile production | Lethal | Medium | High | High | Medium | | Seasonal
operations and
Stepped
Release Plan | Suboptimal flow
(March – June) | Smolt
emigration
Stanislaus River | Jan. – Jun. | Failure to escape river before
temperatures rise at lower river
reaches and in Delta; thermal
stress; misdirection, higher risk of
predation | Sublethal and indirectly lethal via predation | Medium | High | Medium to
High | Medium | #### **East-side Division (SJ): Action Components** | Core Operations | Scheduling | Collaborative Planning | |-----------------|------------|---------------------------------| | N/A | N/A | Lower San Joaquin River Habitat | #### San Joaquin Uncertainties • **Regulatory requirements at Vernalis:** Because of the SWRCB's efforts to update the Bay Delta Water Quality Control Plan, there is uncertainty about what Vernalis flow and Vernalis Electrical Conductivity (EC) requirements will be in January 2020, when the opinion takes effect. ### Significant Effects to Individuals (SJ): Steelhead | Action
Component | Stressor | Life Stage (Location) | Life Stage
Timing (Work
Window
Intersection) | Individual Response and
Rationale of Effect | Severity of
Stressor | Proportion of
Population
Exposed | Frequency
of Exposure | Magnitude
of Effect | Weight of
Evidence | |---------------------|--|---|---|--|---|--|--------------------------|------------------------|-----------------------| | PA Conditions | Contaminants (particularly
dormant sprays) from land uses
made possible by operations | Juvenile rearing
Confluence of
Stanislaus to Mossdale | Dec-May | Reduced food supply; suppressed
growth rates; smaller size at time
of emigration, starvation; indirect:
loss to predation; poor energetics; | Sublethal and indirectly lethal via predation | Medium | High | Medium to
High | Low | | PA Conditions | Lack of overbank flow to inundate rearing habitat | Juvenile rearing
Confluence of
Stanislaus to Mossdale | Dec-May | Reduced food supply; suppressed
growth rates; starvation; loss to
predation; poor energetics; indirect
stress effects, smaller size at time
of emigration; | Sublethal and indirectly lethal via predation | Medium | High | Medium to
High | Medium | | PA Conditions | Reduction in rearing habitat
complexity due to reduction in
channel forming flows | Juvenile rearing
Confluence of
Stanislaus to Mossdale | Dec-May | Reduced food supply; suppressed
growth rates; starvation; loss to
predation; poor energetics; indirect
stress effects, smaller size at time
of emigration; | Sublethal and indirectly lethal via predation | Medium | High | Medium to
High | Medium | | PA Conditions | Springtime water temperatures warmer than life history stage requirements, primarily March-May | Juvenile migration
Confluence of
Stanislaus to Mossdale | Dec-May | Metabolic stress; starvation; loss
to predation; indirect stress
effects, poor growth; | Sublethal and indirectly lethal via predation | Medium | Medium | Medium to
High | Medium to
High | | PA Conditions | Predation by non-native fish
predators because rearing
habitat is lacking | Juvenile out-migration
Confluence of
Stanislaus to Mossdale | Feb-Jun | Juvenile mortality; Reduced juvenile production | Lethal | Medium | High | High | Medium | | PA Conditions | Suboptimal flow | Juvenile out-migration Confluence of Stanislaus to Mossdale | Feb - Jun | Failure to escape river before
temperatures rise at lower river
reaches and in Delta; thermal
stress; misdirection, higher risk of
predation | Sublethal and indirectly lethal via predation | Medium | High | Medium to
High | Medium | #### Integration and Synthesis: Winter-run | Step | Apply the Available Evidence to Determine if | True/False | Action | |------|--|------------|------------| | A | The proposed action is not likely to produce stressors that have direct or | True | End | | A | indirect adverse effects on the environment | False | Go to
B | | В | Listed individuals are not likely to be exposed to one or more of those stressors or one or more of the direct | True | NLAA | | В | or indirect consequences of the proposed action | False | Go to
C | | C | Listed individuals are not likely to respond upon being exposed to one or | True | NLAA | | | more of the stressors produced by the proposed action | False | Go to
D | | | Any responses are not likely to constitute "take" or reduce the fitness | True | NLAA | | D | of the individuals that have been exposed | False | Go to
E | | | Any reductions in individual fitness are not likely to reduce the viability of | True | NLJ | | E | the populations those individuals represent | False | Go to
F | | F | Any reductions in the viability of the exposed populations are not likely to | True | NLJ | | Г | reduce the viability of the species | False | LJ | - One remaining population at high risk - High level of biological uncertainty - PA is expected to result in concerning levels of egg mortality: - 5-6% for 68% of years (Tier 1) - · 12-15% for 17% of years (Tier 2) - · 28-34% for 7% of years (Tier 3) - · 79-81% for 7% of years (Tier 4). - No commitment to stay within a Tier - No commitment to build Shasta storage - Entrainment Index 7-38% higher at Delta pumping facilities - DCC open 10 additional days Dec-Jan all years - LCM abundance is 3% higher under COS but CRR is 0.5% higher in the PA - The PA is likely to reduce the abundance and diversity VSP parameters (and habitat quality) # Integration and Synthesis: Spring-run Key Findings | Step | Apply the Available Evidence to Determine if | True/False | Action | |------|---|------------|---------| | | The proposed action is not likely to produce stressors that have direct or | True | End | | A | indirect adverse effects on the environment | False | Go to B | | В | Listed individuals are not likely to be exposed to one or more of those stressors or one or more of the direct | True | NLAA | | D | or indirect consequences of the proposed action | False | Go to C | | C | C Listed individuals are not likely to respond upon being exposed to one or more of the stressors produced by the proposed action | True | NLAA | | C | | False | Go to D | | Б | Any responses are not likely to constitute "take" or reduce the | True | NLAA | | D | fitness of the individuals that have been exposed | False | Go to E | | E | Any reductions in individual fitness are not likely to reduce the viability | True | NLJ | | E | of the populations those individuals represent | False | Go to F | | F | Any reductions in the viability of the exposed populations are not likely to | True | NLJ | | I. | reduce the viability of the species | False | LJ | 2 out of 3 wild populations at high risk, declining trend - DCC Gates open more frequently (Dec-Jan), increasing entrainment into South Delta - Modeled Old and Middle River flows (OMR flows) will be approximately 3,500 to 4,000 cfs more negative during April and May in wetter water year types with the elimination of the I:E ratio. - Clear Creek spawning and holding temperatures often exceeded management approach not current scientific standard. - OMR flows are modeled to not be positive at any time (monthly average/ exceedance plots). - PA components are expected to appreciably reduce the abundance and diversity VSP parameters for spring-run populations (and habitat quality). | Water Yeartype | Predicted loss
under PA | Predicted loss under COS | PA-COS | % change | |----------------|----------------------------|--------------------------|---------|----------| | Wet | 270,759 | 125,972 | 144,788 | 115 | | Above Normal | 199,562 | 75,124 | 124,438 | 166 | | Below Normal | 43,781 | 20,859 | 22,922 | 110 | | Dry | 88,278 | 48,347 | 39,931 | 83 | | Critical | 42,325 | 23,917 | 18,408 | 77 | #### Integration and Synthesis: Steelhead | Step | Apply the Available Evidence to Determine if | True/Fal
se | Action | |------|--|----------------|---------| | A | The proposed action is not likely to produce stressors that have direct or | True | End | | A | indirect adverse effects on the environment | False | Go to B | | В | Listed individuals are not likely to be exposed to one or more of those stressors or one or more of the direct | True | NLAA | | Б | or indirect consequences of the proposed action | False | Go to C | | C | Listed individuals are not likely to respond upon being exposed to one or | True | NLAA | | | more of the stressors produced by the proposed action | False | Go to D | | Б | Any responses are not likely to constitute "take" or reduce the fitness | True | NLAA | | D | of the individuals that have been exposed | False | Go to E | | Г | Any reductions in individual fitness are not likely to reduce the viability of | True | NLJ | | Е | the populations those individuals represent | False | Go to F | | F | Any reductions in the viability of the exposed populations are not likely to | True | NLJ | | 1 | reduce the viability of the species | False | LJ | - DPS at moderate risk of extinction - DCC Gates open more frequently (Dec-Jan), increasing entrainment into South Delta - Modeled Old and Middle River flows (OMR flows) will be approximately 3,500 to 4,000 cfs more negative during April and May in wetter water year types with the elimination of the I:E ratio. - Differential survival is 20% between HORB in vs. out between 3800cfs-5,000cfs at ernalis - OMR flows are modeled to not be positive at any time (monthly average/ exceedance plots). - OMR flows and steelhead density triggers are not protective of the Southern Sierra Diversity Group - PA components are expected to appreciably reduce the abundance VSP parameter for steelhead populations of the Sacramento River and San Joaquin River basin #### Integration and Synthesis: Green Sturgeon | Step | Apply the Available Evidence to Determine if | True/False | Action | |------|---|------------|------------| | A | The proposed action is not likely to produce stressors that have direct or | True | End | | A | indirect adverse effects on the environment | False | Go to B | | В | Listed individuals are not likely to be exposed to one or more of those stressors or one or more of the direct or | True | NLAA | | Б | indirect consequences of the proposed action | False | Go to C | | C | Listed individuals are not likely to respond upon being exposed to one or | True | NLAA | | | more of the stressors produced by the proposed action | False | Go to
D | | ъ | Any responses are not likely to constitute "take" or reduce the fitness | True | NLAA | | D | of the individuals that have been exposed | False | Go to E | | Е | Any reductions in individual fitness are not likely to reduce the viability of the | True | NLJ | | Ľ | populations those individuals represent | False | Go to F | | F | Any reductions in the viability of the exposed populations are not likely to | True | NLJ | | I. | reduce the viability of the species | False | LJ | - Single population at moderate risk - Green sturgeon presumably have access to suitable spawning and incubation areas on the Sacramento River under all conditions (e.g., droughts) - Low and medium magnitude impacts from PA and only a small portion of the population are likely to experience mortality or substantial injury - Overall, the PA is not expected to exert any additional selective pressures on green sturgeon and the diversity VSP parameter of the population is expected to remain unchanged #### Integration and Synthesis: SRKW | Step | Apply the Available Evidence to Determine if | True/False | Action | |------|---|------------|------------| | A | The proposed action is not likely to produce stressors that have direct or | True | End | | A | indirect adverse effects on the environment | False | Go to B | | В | Listed individuals are not likely to be exposed to one or more of those stressors or one or more of the direct or | True | NLAA | | Б | indirect consequences of the proposed action | False | Go to C | | C | Listed individuals are not likely to respond upon being exposed to one or | True | NLAA | | C | more of the stressors produced by the proposed action | False | Go to
D | | D | Any responses are not likely to constitute "take" or reduce the fitness | True | NLAA | | D | of the individuals that have been exposed | False | Go to E | | Е | Any reductions in individual fitness are not likely to reduce the viability of the | True | NLJ | | E | populations those individuals represent | False | Go to F | | F | Any reductions in the viability of the exposed populations are not likely to | True | NLJ | | I. | reduce the viability of the species | False | LJ | - Species is at a high risk of extinction - Recent information indicates that fecundity is low and that the population is expected to decline in the future. - Chinook salmon are dominant components of available Chinook salmon prey. - Under the PA, SRKWs will continue to be exposed to a decreasing abundance of CV Chinook salmon during sensitive time period (winter-spring) - The PA is expected to diminish VSP parameters and increase extinction risk of ESA-listed units. - The prospect for persistent and escalating risks of reduced survival and reproductive success continuing indefinitely in the future reduce the likelihood of survival and recovery of this species.