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Abstract Fisheries and water resource managers are chal-

lenged to maintain stable or increasing populations ofChinook


salmon in the face ofincreasing demandon the water resources


and habitats that salmon depend on to complete their life cycle.


Alternative management plans are often selected using profes-

sional opinion or piecemeal observations in place ofintegrated


quantitative information that could reduce uncertainty in the


effects of management plans on population dynamics. We


developed a stochastic life cycle simulation model for an


endangered population of winter-run Chinook salmon in the


Sacramento River, California, USAwith the goal ofproviding


managers a tool for more effective decision making and dem-

onstrating the utility oflife cycle models for resource manage-

ment. Sensitivity analysis revealed that the input parameters


that influencedvariation in salmonescapementwere dependent


on which age class was examined and their interactions with


other inputs (egg mortality, Delta survival, ocean survival).


Certain parameters (rivermigration survival, harvest) thatwere


hypothesized to be important drivers of population dynamics


were not identified in sensitivity analysis; however, there was a


large amount of uncertainty in the value of these inputs and


their error distributions. Thus, the model also was useful in


identifying future researchdirections. Simulationofvariation in


environmental inputs indicated that escapement was signifi-

cantly influenced by a 10% change in temperature whereas


larger changes in other inputs would be required to influence


escapement. The model presented provides an effective dem-

onstration of the utility of life cycle simulation models for


decision making and provides fisheries and water managers in


the Sacramento system with a quantitative tool to compare the


impact ofdifferent resource use scenarios.
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1 Introduction


Understanding what drives interannual variability in Chinook


salmon (Oncorhynchus tshawytscha) populations is ofconsid-

erable interest to resource managers because ofthe large num-

ber of salmon stocks that are currently listed as threatened or


endangered [1, 14]. Declines in the number ofsalmon return-

ing to spawn have triggered recovery plans intended to stabi-

lize or increase population sizes. The success ofthese plans has


varied considerably and many populations remain at risk [15].


The factors responsible for declines in Chinook salmon pop-

ulations are generally known yet, the relative importance of


each factorand the scale atwhich it operates is oftenunknown,


which complicates attempts to effectively apply management


actions to recover Chinook salmon stocks [7, 31, 37].


Both scientists and managers have increasingly recognized


the utility of life cycle models for evaluating salmon popula-

tionresponses tomanagementactions [28], andarecent review


of salmon recovery efforts in California’s Central Valley rec-

ommended their use [12]. Although there have been many


studies and monitoring efforts focused on the ecology of


salmon at the individual and population level, many of these


data relate only to a single life stage, habitat type, or environ-

mental variable. This has made it difficult to integrate these


data into a traditional statistical framework to estimate inter-

annual population dynamics or to identify specific bottlenecks


to population recovery. Life cycle models utilize available


time-series data as well as values taken from laboratory studies


or other sources to parameterize model relationships, thereby


utilizing the greatest amount ofdata available to dynamically


simulate responses ofpopulations across multiple life stages to


changes in environmental variables or combinations of
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environmental variables at specified times and locations.


Thus, these models are powerful tools that can be used by


managers to plan and evaluate recovery actions for Chinook


salmon. Here, we present a life cycle simulation model for an


endangered winter-run Chinook salmon population in the


Sacramento River, California, USA (Fig. 1).


Sacramento River Chinook salmon stocks have expe-

rienced severe declines over the last century resulting in


extirpation of some populations [14] and a moratorium


on commercial and sport harvest in recent years to


protect extant populations. Winter run in the Sacramento


River was listed as endangered under the Federal En-

dangered Species Act in 1994 [9]. Historically, winter


run utilized high elevation stream habitats in the Upper


Sacramento River and tributaries for holding, spawning,


and rearing [36]. However, extensive dam construction


in the early twentieth century restricted winter run to a


single reach of the lower Sacramento River below


Keswick Dam [35]. After leaving the spawning and


rearing habitat, juvenile winter run migrate down the


Sacramento River, through the Sacramento–San Joaquin


Delta (hereafter referred to as the Delta) and spend from


2 to 4 years in the ocean before returning to their natal


spawning grounds.


As pressure on Sacramento River water resources con-

tinues to increase from domestic and agricultural users,


resource managers are in need ofquantitative tools to com-

pare the relative impact offuture water use activities on the


winter-run population and to select relevant life stages and


environmental variables to focus on for recovery actions.


Our goals for this study were to describe a stochastic life


cycle simulation model for winter run in the Sacramento


River: the Interactive Object-Oriented Simulation Model


(IOS). Specifically, we: (1) present the structural and func-

tional relationships of the IOS model, (2) conduct a sensi-

tivity analysis that describes uncertainty in estimates of


model parameters, and uncertainty due to inherent stochas-

ticity ofthe population, and (3) examine the response ofthe


model to variability in the four environmental drivers for


which sufficient data were available including: temperature


that affects egg and fry survival during early development,


flow that affects survival and migration travel time during


freshwater migration, water exports that affect survival in


certain migration pathways, and ocean productivity that


affects survival in the ocean.


2 Methods


2.1 Model Description and Structure


The IOS model uses a systems dynamics modeling frame-

work, a technique that is used for framing and understanding


the behavior of complex systems over time [6, 10]. System


dynamics models are made up of stocks (e.g., number of


fish) and flows (e.g., sources of mortality) which are in-

formed by mathematical equations [10]. IOS was imple-

mented in the software GoldSim, which enables the


simulation ofcomplex processes through creation ofsimple


object relationships, while incorporating Monte Carlo sto-

chastic methods [27]. Terms used in the model description


are defined in Table 1.


The IOS model is composed ofsix model stages that are


arranged sequentially to account for the entire life cycle of


winter run, from eggs to returning spawners (Fig. 2). In


sequential order, the IOS model stages are: (1) spawning,


that models the number and temporal distribution of eggs


deposited in the gravel at the spawning grounds; (2) early


development, that models the impact of temperature on


maturation timing and mortality of eggs at the spawning


grounds; (3) fry rearing, that models the relationship be-

tween temperature and mortality of salmon fry during the


river rearing period; (4) river migration, that estimates mor-

tality of migrating salmon smolts in the Sacramento River


between the spawning and rearing grounds and the Delta;


(5) delta passage, that models the impact of flow, route


selection, and water exports on the survival of salmon


smolts migrating through the Delta to San Francisco Bay;


and (6) ocean survival, that estimates the impact of natural


mortality and ocean harvest to predict survival and spawning


returns (escapement) byage. Below is adetaileddescriptionof


each model stage.


Spawning For the first four simulation years, the model is


seeded with a fixed number of female spawners. In subse-

quent years, the number of spawners is determined by the


model’s probabilistic simulation ofsurvival to this life stage.


To ensure that developing fish experience the correct envi-

ronmental conditions during each year, spawn timing


mimics the observed arrival of salmon on the spawning


grounds as determined by 8 years of carcass surveys


(2002–2009) conducted by the United States Fish and Wild-

life Service (USFWS). Winter run die after spawning which


allows the size of the spawning population to be estimated


from the number ofcarcasses observed. In each year, one of


the eight spawning distributions is chosen at random. Eggs


deposited on a particular date are treated as cohorts which


experience temperature and flow on a daily time step during


this stage. The daily number of spawners is calculated by


multiplying the daily proportion of the total carcasses ob-

served during the USFWS surveys by the total Jolly–Seber


estimate of spawners [24].


Sd ¼ CdSJS ð1Þ


where, Sd is the daily number of spawners, Cd is the daily


proportion oftotal carcasses, and SJS is the total Jolly–Seber
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Fig. 1 Map of the Sacramento River and the Sacramento–San Joaquin Delta, including approximate areas defined by each model-stage
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estimate of spawners. In order to better match the timing of


carcass observations to the deposition of eggs, the date of


egg deposition is shifted 14 days before the carcasses were


observed (Kevin Niemela, personal communication).


To obtain an estimate of juvenile production, a Ricker


stock-recruitment curve [26] was fit between the number of


fry produced each year (R) and the number of spawners (S)


as estimated by the California Department ofFish and Game


screw trap sampling (juveniles) and USFWS carcass surveys


(spawners) for years (1996–1999, 2002–2007):


R ¼ aSebS þ " ð2Þ


where, R is the estimate of juvenile recruitment, α is a


parameter that describes recruitment rate, and β is a param-

eter that measures the level of density dependence. The


density-dependent parameter (β) did not differ significantly


from zero (95% CI0−6.3×10−6−5.5×10−6). Therefore, β


was removed from the equation and a linear version of the


relationship was estimated. The number of spawners


explained 86% of the variation in fry production (F1,90


268, p<0.001) in the data, so the value ofα was taken from


the regression:


R ¼ 1043&S ð3Þ


This linear relationship is used to predict values for mean


fry production along with the confidence intervals for the


predicted values. These values are then used to define a


normal probability distribution, which is randomly sampled


each year to determine the annual fry production. Although


the Ricker model accounts for mortality during egg incuba-

tion, the data used to fit the Ricker model were from a


limited time period (1996–1999, 2002–2007) when water


Table 1 Glossary of

terms used to

describe model func-
tions, data sources,

and relevant locations

in the study area


Term Definition


CDFG California Department ofFish and Game


Delta A freshwater tidal estuary formed by the Sacramento and San Joaquin Rivers that salmon

juveniles must pass through on their way to the Pacific Ocean


Escapement The total number ofChinook salmon that leave the ocean and return to the Sacramento

River to spawn. This number includes 2-, 3-, and 4-year-old fish


Fry Salmon life stage that occurs from the period ofemergence from spawning gravels until the


start of physiological changes in preparation for migration


Jolly_Seber estimate A statistical method ofestimating the size ofa population using mark and recapture data


Screwtrap A passive sampling devise that traps juvenile salmon as they migrate downstream


Smolt Salmon life stage characterized by physiological changes in preparation for migration and

ocean entry


Spawner Salmon that leaves the ocean and returns to the Sacramento River to spawn. This can occur

at age 2, 3 or 4. All fish die after spawning


USFWS United States Fish and Wildlife Service


Winter-run Chinook 

salmon 

A genetically distinct population ofChinook salmon that completes the freshwater portion


oftheir life cycle in the Sacramento River. This population has been listed as endangered

under the federal Endangered Species Act


Junction Geo/DCC The combined junction of the Sacramento River, Georgiana Slough and the Delta Cross


Channel. Both Georgiana Slough and the Delta Cross channel lead into the Interior Delta

reach


Junction SS The junction between two potential migration routes, the Sacramento River and Sutter/

Steamboat Slough


Interior Delta A reach that fish entering through Junction Geo/DCC must pass through on their way to the

ocean. This reach is a network oftidal channels and a relationship between water exports


and survival is present in this reach


Reach Geo/DCC The combined reach ofGeorgiana Slough and the Delta Cross Channel


Reach Sac 1 The Sacramento River between the start of the Delta at Freeport and the junction with

Steamboat/Sutter Slough


Reach Sac2 The Sacramento River between the reach Sac1 and the Junction ofGeorgiana Slough and

the Delta Cross Channel


Reach Sac3 The Sacramento River between Sac2 and the confluence ofSteamboat/Sutter Slough and

the Sacramento River. A flow–survival relationship is present in this reach


Reach Sac4 The Sacramento River between the confluence of the Sacramento River and Sutter/

Steamboat Slough and the end of the Delta Passage model stage


Reach SS The combined reach ofSutter and Steamboat Slough. A flow–survival relationship is

present in this reach.
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temperatures during egg incubation were too cool (<14°C)


to cause significant temperature-related egg mortality [32].


Thus, additional mortality was imposed in the model when


temperatures exceeded those experienced during the years


used to construct the Ricker model.


Early Development Data from three laboratory studies was


used to estimate the relationship between temperature, egg


mortality, and development time [4, 19, 32]. Using data from


these experiments, a relationship was constructed between


maturation time and water temperature. First, we converted


maturation time (days) to a daily maturation rate (1/day):


dailymaturationrate ¼ maturationtime1 ð4Þ


A significant linear relationship between maturation rate


and water temperature was detected using linear regression


(F1,1502,188, p<0.001):


dailymaturationrate ¼ 0:00058&Temp  0:018 ð5Þ


Each day, the mean maturation rate ofthe incubating eggs


is predicted from the daily temperature using the above linear


function; the predicted mean maturation rate along with the


confidence intervals ofthe predicted values are used to define


a normal probability distribution, which is then randomly


sampled to determine the daily maturation rate. A cohort of


eggs accumulates a percentage of total maturation each day


from the above equation until 100% maturation is reached.


Data from the USFWS [32] was used to inform the rela-

tionship between temperature and mortality of developing


winter-run eggs. This study utilized a small number of treat-

ments (three temperature treatments) and although studies


from other regions could have been used, we chose to use


data specific to winter run. Salmon populations are adapted to


local temperature regimes and use ofdata from outside ofthe


Sacramento River may not conform with the requirements of


winter run. The functional form ofthe temperature–mortality


relationship was similar to data fromother regions suggesting


thatUSFWS dataonwinter runwas sufficient to parameterize


the model-predicted mortality over the entire incubation peri-

odwas converted to adailymortality rate to apply temperature


effects in the model. This conversion was used to calculate


daily mortality using the methods described in [3]:


mortality ¼ 1  1  totalmortality 
ð1=developmenttimeÞ ð6Þ


where, totalmortality is the predictedmortality over the entire


incubation period observed for a particular water temperature
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Fig. 2 Conceptual diagram of IOS model stages and environmental

influences on functional relationships at each stage. Colors indicate the

environmental driver influencing each relationship where red


temperature, blue flow, green water exports, and pink ocean produc-
tivity. Relationships in black indicate that values are drawn from a

normal distribution, a uniform distribution, or are constants
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and development time was the time to develop from fertiliza-

tion to emergence.


The following exponential relationship was fitted between


observed daily mortality and observed water temperatures


[32]:


dailymortality ¼ 1 :38&1015eð0:503&TempÞ ð7Þ


Each day, the mean mortality rate of the incubating


eggs is predicted from the daily temperature measured


at Bend Bridge on the Sacramento River using the


above exponential function. The predicted mean mortal-

ity rate along with the confidence intervals of the pre-

dicted values is used to define a normal probability


distribution, which is then randomly sampled to deter-

mine the daily egg mortality rate.


Fry Rearing Data from USFWS [32] was used to model


fry mortality during rearing as a function of water


temperature. The following exponential relationship


was fitted between observed daily mortality and ob-

served water temperatures [32]:


dailymortality ¼ 3:92&1012eð0:349&TempÞ ð8Þ


Each day, the mean proportional mortality of the


rearing fish is predicted from the daily temperature


using the above exponential relationship; the predicted


mean mortality along with the confidence intervals of


the predicted values are used to define a normal prob-

ability distribution, which is then randomly sampled to


determine daily mortality. Temperature mortality is ap-

plied to rearing fry for 60 days that is the approximate


time required for fry to transition into smolts [32] and


enter the next stage.


River Migration In this model stage, survival of smolts


from the spawning and rearing grounds to the Delta


(City of Freeport on the Sacramento River) is a normal-

ly distributed random variable with a mean of 23.5%


and a standard error of 1.7%. Mortality in this stage is


applied only once and occurs on the same day that a


cohort of smolts enters the model stage rather than


being applied daily as in the Early Development stage


because there was no data to support a relationship with


flow or temperature. Smolts are delayed from entering


the next model stage to account for travel time. Mean


travel time (20 days) is used along with the standard


error (3.6 days) to define a normal probability distribu-

tion, which is randomly sampled to determine the total


travel time of migrating smolts. Survival and travel time


means and standard deviations were acquired from an


acoustic study of late-fall run Chinook smolt migration


in the Sacramento River [18].


Delta Passage Smolt migration is evaluated based on four


major functional relationships: (1) route selection by smolts at


river junctions, that is a function of the proportion of flow


entering each route; (2) reach specific and flow-survival rela-

tionships, where survival in two reaches is a function offlow


and a normally distributed variable in all other reaches; (3)


flow–migration speed, which is a function of reach specific


flow; and (4) exportmortality, which is causedby entrainment


into State and Federal water pumping facilities. Daily cohorts


ofsmolts enter the first reach ofthe Delta on a day ofthe year


determined by timing in the previous model stages. In reaches


with a flow–survival relationship, mean flow on the day


smolts enter the reach is used to calculate a survival value


and a migration speed for that reach. The survival value is


applied once to all smolts that entered the reach on that date.


Then, smolts are delayed from entering the next reach by a


number ofdays determined by the calculated migration rate


and the lengthofthe reach. In reaches without a flow–survival


relationship, survival values are drawn from a normal proba-

bility distribution and migration speed is calculated as a func-

tion offlow on the day ofentry into the reach. When smolts


reach a junction, a daily cohort will split according to the


relationships described below, based on the flow on the day


smolts reach the junction.


Fish route selection at junctions is based on acoustic


tagging studies in the Delta by Perry et al. [23]. At the


junction of the Sacramento River and Steamboat/Sutter


Slough (Junction SS, Table 1), smolts consistently entered


downstream reaches in proportion to the flow being


diverted. For the Sacramento River–Geo/DCC junction (Junc-

tion Geo/DCC, Table 1), there was a linear, nonproportional


relationship between flow and fish movement:


y ¼ 0:22 þ 0:47x ð9Þ


where, y is the proportionoffishdiverted intoGeo/DCC and x


is the proportion offlow diverted into Geo/DCC.


Reach-specific survival and associated error estimates


also were obtained from Delta acoustic tagging studies


[23] where mean reach survival is used with reach-specific


standard deviation to define a normal probability distribu-

tion sampled daily to determine the survival rate. There was


a significant relationship between survival and flow for two


Delta reaches (SS and Sac3; [23]) and we used a logit


survival function to predict mean reach survival (S) from


reach flow (flow):


S ¼ 
e b0þb1flow


1 þ e b0þb1flow

ð
10Þ


where, β0 (SS0−0.175, Sac30−0.121) is the reach coeffi-

cient and β1 (0.52) is the flow coefficient. All the benefits of


increased flow are accounted for the in relationships we


have applied for reaches SS and Sac3.
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Daily downstream smolt movement occurs as function of


reach-specific length and migration speed as developed


from acoustic tagging results. We used flow and migration


speeds reported by Vogel [33] to create a best-fit logarithmic


relationship:


y ¼ 16:59lnðxÞ  76:79 ð11Þ


where, y is migration speed (kilometer per day1) and x is


flow (cubic meter per second). Due to assumed strong tidal


influences in reach Sac4, migration speed in this reach is


independent offlow; set at 22.6 km·day−1, the average speed


of acoustic tagged smolts [33]. Migration speed variance


from acoustic study data is used along with mean migration


speed to define a normal probability distribution that is


sampled from each day to determine the daily migration


speed in each reach.


Fish that enter the DCC/Georgiana Slough junction enter


the interior delta that is a complex network oftidal freshwater


channelswhere smolts are exposed to naturalmortality aswell


as entrainment in large water diversions. To apply water


export-related effects, we used the export–mortality relation-

ship described by Newman and Brandes [22]:


S ¼ 0:000024&exports þ 0:625 ð12Þ


where, S is mean survival and the slope (−0.000024) is from


the relationship between survival and Delta exports in cubic


meter per second. The intercept was adjusted from 0.58 to


0.625 so the regression linepasses the point (184, 0.47), where


184 is themeanexport level (cubicmeterpersecond) and0.47


is the mean survival rate observed during the acoustic studies


we used to estimate survival in the InteriorDelta. In effect, we


used the slope ofthe relationship betweensurvival andexports


estimated by Newman and Brandes [22] as a scalar on the


survival rates observed from acoustic tagging studies. Mean


survival is then used along with the standard deviation to


inform a normal probability distribution that is sampled from


each day to determine Interior Delta survival.


As each cohort of smolts exits the final reaches of the


Delta, they accumulate until all cohorts from that year have


exited the Delta. After all smolts have arrived, they enter the


Ocean Survival stage as a single cohort and the model


begins applying mortality on an annual time step.


Ocean Survival This model stage utilizes equations for


smolt-to-age-2 mortality, winter mortality, ocean harvest,


and spawning returns to predict yearly survival and escape-

ment numbers (i.e., individuals exiting the ocean to spawn).


Ocean Survival model stage elements are listed in Table 2


and discussed below.


Relying on ocean harvest, mortality, and returning


spawner data from Grover et al. [13], we applied a uniform-

ly distributed random variable between 96% and 98%


mortality for winter run from ocean entry to age 2 and we


developed functional relationships to predict ocean survival


and returning spawners for age 2 (8% return), age 3 (88%


return), and age 4 (4% return), assuming that 100% of


individuals which survive to age 4 return for spawning.


Ocean survival to age 2 is given by:


A2 ¼ Ai 1  M2 ð Þ 1  Mw ð Þ 1  H2 ð Þ 1  Sr2 ð Þ&W ð13Þ


survival to age 3 is given by:


A3 ¼ A2 1  Mw ð Þ 1  H3 ð Þ 1  Sr3 ð Þ ð14Þ


and survival to age 4 is given by:


A4 ¼ A3 1  Mw ð Þ 1  H4 ð Þ ð15Þ


where, Ai is abundance at ocean entry (from the Delta


Passage model stage), A2,3,4 are abundances at ages 2–


4, H2,3,4 are harvest percentages at ages 3–4 represented


by uniform distributions bounded by historical harvest


levels, M2 is smolt-to-age-2 mortality, Mw is winter mor-

tality for ages 2–4, and Sr2,r3 are returning spawner


percentages at ages 2 and 3. Age 2 survival is multiplied


by a scalar W that corresponds to the value of Wells’


Index of ocean productivity. This metric was shown to


significantly influence growth and maturation of age 2


fish [34]. The value of Wells’ Index is a normally


distributed random variable that is resampled each year.


In our analysis, we used the following values from


Grover et al. [13]: H200%, H3 00–39%, H400–74%,


M2094–98%, Mw020%, Sr208%, and Sr3096%.


The number of adult fish in the ocean that will return to


the spawning grounds is determined on day 334 ofeach year


according to the percentages described above. Returning


fish are assumed to be 65% female and are assigned a


prespawn mortality of 5% to determine the final number of


female returning spawners [30].


2.2 Environmental Input Data


Dailyflows andtemperatures experiencedbysalmon(Table 3)


are determined by selection ofa water year type in the Sacra-

mento River as classified by the California Department of


Water Resources (critical, dry, below normal, above normal,


and wet). The probability of each type of water year being


selected is represented by a discrete distribution based on the


previous 100 years ofdata. With the exception offlow into the


State Water Project (SWP) and Central Valley Project (CVP)


pumping plants, flow is modeled using daily (tidally aver-

aged) flow output from the hydrology module of the Delta


Simulation Model II (DSM2-HYDRO; http://baydeltaoffice.


water.ca.gov/modeling/deltamodeling/). Export flow into the


CVP and SWP pumping plants is modeled using monthly


flow output from the hydrologic simulation tool CALSIM II
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thatare“disaggregated”intomeandailyflowsbasedonhistorical


patterns.Meanflowandtemperaturewasaveragedeachdayover


theentireperiodofrecordforeachofthefivewateryeartypes to


create a single flowand temperature regime foreachwateryear


type. Daily temperature in theSacramentoRiveratBendBridge


from 1989 to 2010 was obtained from the California Data Ex-

changeCenter(http://cdec.water.ca.gov/).


2.3 Sensitivity Analysis


Sobol’ indices were used to evaluate the sensitivity ofmodel


output to input parameters. Sobol’ indices are a variance-

based global sensitivity method that produces main indices


(effects independent of other input parameters) and total


indices (effects accounting for first-order interactions with


Table 3 Environmental

variables used to inform func-
tional relationships in

the IOS model


Location Variable Model stage Source


Sacramento River at Bend Bridge Temperature Early Development CDEC


Sacramento River at Hood Flow Delta migration DSM2


Sutter-Steamboat Slough Flow Delta migration DSM2


Delta Cross Channel Flow Delta migration DSM2


Georgiana Slough Flow Delta migration DSM2


Sacramento River at Rio Vista Flow Delta migration DSM2


Interior Delta Exports Delta migration CALSIM2


Ocean Ocean productivity Ocean survival Wells et al. 2007


Table 2 Functional relationships

in the IOS model during each

model stage and environmental

variables associated with each

relationship


Model Stage Parameter Environmental variable Function


Spawning Daily proportion of total 
spawners


None Equation 1


Early 
development 

Daily egg mortality Temperature Equation 7


Egg-to-fry development 

time


Temperature Equation 5


Fry rearing Daily fry-to-smolt survival Temperature Equation 8


River 
migration 

Downstream survival None Normally distributed

random variable


Delta passage Reach-Sac1 survival None Normally distributed

random variable


Reach-Sutter/Steamboat Flow Equation 10


Reach-Sac2 None Normally distributed


random variable


Reach-Sac3 Flow Equation 10


Reach-Sac4 None Normally distributed

random variable


Reach-Geo-DCC None Normally distributed

random variable


Interior Delta Water exports Equation 12


Junction-Sac2-Sutter/ 

Steamboat 

Flow Proportional to flow in each


reach


Junction-Sac3-Delta Cross 
Channel


Flow Equation 9


Migration duration Flow Equation 11


Migration duration (Sac4) None Constant


Ocean 

survival 

Smolt-age 2 survival None Uniform random variable


Age 2 ocean survival Well’s Index of ocean 
productivity


Equation 13


Age 3 ocean survival None Equation 14


Age 4 ocean survival None Equation 15


Age 3 harvest None Uniform random variable


Age 4 harvest None Uniform random variable
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other input parameters). This method does not require a


linear relationship between model output and input param-

eters and thus is superior to other global methods, such as


multiple regression, when relationships are nonlinear or


nonmonotonic [5, 8, 29].


For the sensitivity analysis, 1,000 bootstrap resamples


were used to calculate 95% confidence intervals for Sobol’


main and total effects. The number of female spawners


returning (escapement) was used as the response variable


and model inputs included as independent variables for each


age class are listed in Table 4. Each group of returning


spawners is composed of three age classes (age 2, 3, and


4) that experiences a different set of environmental condi-

tions during their life. Thus, sensitivity analyses were con-

ducted separately for each year class. Certain parameters


were not included in all sensitivity analyses because they


did not apply to all year classes. For example, age 2 fish are


not exposed to harvest.


Latin Hypercube sampling was used to generate 1,000


Monte Carlo iterations ofthe IOS model for use in calculation


ofthe Sobol’ indices. For each iteration, the first 4 years ofthe


model was seededwith 5,000 returning spawners and allowed


to run for 5 years. The fifth year ofoutput data was used for


the sensitivity analysis because this is the first year that the


number ofreturning spawners is a function ofmodel param-

eters. Fish returning to the spawning grounds aremixof2-, 3-,


and 4-year-old fish that account for 8%, 88%, and 4% ofthe


total, respectively. Input parameters were considered sensitive


iftheir confidence interval did not include zero and were then


ranked based on their absolute values. Sobol’ indices were


calculated using the package “sensitivity” within the R statis-

tical program [25].


To explore how uncertainty in parameter estimates influ-

enced model output, we conducted five additional sets of


1,000 Monte Carlo simulations where the variation around


the mean of selected parameters was increased by 10%,


20%, 30%, 40%, and 50%. The parameters we chose to


examine were those that could potentially be addressed by


management actions including: egg mortality, fry-to-smolt


survival, river migration survival, Delta survival, age 3


harvest, and age 4 harvest. Coefficients of variation were


calculated for each set of simulations to examine how the


sensitivity of model output changed with increased uncer-

tainty in input parameters estimates.


2.4 Influence ofEnvironmental Parameters


To understand the influence ofenvironmental parameters on


model output, we examined the response of escapement to


variation in the four environmental parameters: flow, exports,


temperature, and ocean productivity. For each parameter, we


performed three sets of 100 Monte Carlo simulations. All


simulations ran for four winter-run generations (16 years)


and included a baseline condition, a 10% increase in the


parameter and a 10% decrease in the parameter. A one-way


analysis ofvariance and a Tukey’s multiple comparisons test


was then used to determine which treatments resulted in


escapement estimates that were significantly different from


baseline conditions. All statistical tests were performed with


the R statistical program [25].


3 Results and Discussion


3.1 Sensitivity Analysis


Sobol’ sensitivity indices suggested that escapementwas sen-

sitive to different input parameters depending on the age class


examined (Table 4). For age 2 fish, main indices indicated


Table 4 Sobol’ sensitivity indices (standard deviation in parentheses) for each age class of returning spawners based on 1,000 Monte Carlo

iterations


Input parameter Age 2 Age 3 Age 4


Main Total Main Total Main Total


Water year 0.300a (0.083) 0.306a (0.079) 0.181a (0.091) 0.150 (0.091) 0.073 (0.067) 0.012 (0.065)


Egg mortality 0.030 (0.016) −0.006 (0.016) 0.222a (0.081) −0.021 (0.081) 0.102a (0.044) −0.072 (0.044)


Fry-to-smolt survival 0.039 (0.020) −0.009 (0.020) 0.166 (0.090) 0.091 (0.092) 0.079a (0.017) −0.071 (0.017)


River migration survival 0.007 (0.034) 0.135a (0.034) 0.164 (0.084) 0.062 (0.085) 0.079 (0.018) −0.07 (0.018)


Delta survival 0.010a (0.002) −0.009 (0.002) 0.404a (0.180) 0.643a (0.177) 0.313a (0.134) −0.009 (0.132)


Smolt to age 2 survival 0.734a (0.118) 0.454a (0.113) 0.015 (0.016) −0.006 (0.016) 0.057a (0.017) −0.052 (0.017)


Ocean productivity 0.003 (0.009) 0.009 (0.009) 0.034a (0.015) −0.034 (0.015) 0.061a (0.030) −0.048 (0.029)


Age 3 harvest N/A N/A 0.029a (0.001) −0.028 (0.001) 1.48a (0.306) 0.188 (0.293)


Age 4 harvest N/A N/A N/A N/A 0.055a (0.003) −0.054 (0.003)


a Index value was statistically significant at α00.05
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escapement was sensitive to smolt-to-age-2 survival, water


year type, and Delta survival (Table 4). Main and total indices


were similar for water year whereas the main index value for


smolt-to-age-2 survival was considerably larger than the total


value (Table 4). Additionally, age 2 escapementwas sensitive


to river migration survival when interactions were accounted


for in the total index. This suggests that there were strong


interactions between certain input parameters for fish return-

ing to the spawning grounds at age 2 and confirmed that


Sobol’ sensitivity measures were the best choice for this


sensitivity analysis, as interactions are difficult to deal with


using otherglobal analysis techniques [5]. The main index for


Delta survival was significant yet the total index value was


negative. Negativenumbers are possible forSobol’ indices [2]


and we considered negative values to indicate zero sensitivity


[8]. Main indices for age 3 escapement suggested that model


output for this age class was sensitive to many of the input


parameters examined (Table 4). However, total index values


indicated there were strong interactions between inputs, and


age 3 escapement was only sensitive to Delta survival after


accounting for these interactions. Similarly, main indices for


age 4 escapement indicated that output was sensitive to many


parameters (Table 4) whereas after accounting for interactions


in the total index, none of the input parameters significantly


influenced model output.


Although there were differences among age classes in the


sensitivity of input parameters, each age is not represented


equally among returning spawners. Thus, sensitivity should


be viewed in terms of the contribution of each age class and


the relationship among age classes. Age 3 fish comprised the


largest proportion of returning spawners (88%) thus, inputs


drivingvariability in this age class shouldhave the largesteffect


on total escapement. Delta survival, water year, and egg mor-

talitywere significantdrivers ofvariability inage 3 escapement,


however, wateryearandeggmortalitywerenotsignificantafter


accounting for interactions. The Delta passage portion of the


model has flow–survival relationships in two reaches, thus, it is


not surprising that there are interactions between water year


type and Delta survival. Similarly, temperatures were higher in


critical and dry water years and there was an exponential


relationship between temperature and egg mortality.


Age 2 and age 4 fish accounted for 8% and 4% of total


escapement, respectively. Age 4 escapement was most sensi-

tive to harvest of age 3 fish. This is an intuitive result as


harvest at age 3 has a direct influence on the number offish


that survive to age 4. Age 2 escapementwas most sensitive to


smolt-to-age-2 mortality and this relationship remained strong


after accounting for interactions with other inputs (Table 4).


This is a critical period ofthe salmon life cycle when fish are


transitioning from freshwater to saltwater habitats and a large


portion of total mortality occurs during this time [16]. Water


year also was an important driver of variability in age 2


escapement with significant main and total effects where as


Delta survival was not significant when interactions were


accounted for. This is likely a result ofinteractions with water


year as discussed above for age 3 fish.


As variability in input parameters was increased, escape-

ment ranged from 2,806±984 fish (mean and standard devi-

ation) in the baseline treatment to 2,337±904 fish in the 50%


treatment suggesting that model output was robust to param-

eter uncertainty (Fig. 3). Coefficients of variation differed


among input variables yet, CVs for individual input parame-

ters did not vary much among treatments (Fig. 3). Ages 3 and


4 harvesthad the greatestCVs ofanyvariable (0.55–0.60) and


both of these parameters were represented by a uniform dis-

tribution due to limitations in the data available to inform the


relationship. The use of uniform distributions to represent


parameter uncertainty has been identified as a limitation in


other sensitivity analyses [11]. Harvest may have a profound


effect on salmon population dynamics [17, 28] and the IOS


model could be improved by further research on harvest of


winter run that would reduce uncertainty in the true levels of


harvest. All other input parameters were represented by nor-

mal distributions and CVs were less than 0.30 (Fig. 3).


There is a tendency to identify sensitive parameters as


most important to model output. However, Fullerton et al.
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[11] recognized the importance of distinguishing between


sensitivity and ecological relevance. For example, several of


the relationships in the IOS model are based on limited data


that influence the estimate ofinput parameters and the form


ofuncertainty distributions associated with those estimates.


For example, rivermigration survival has been hypothesized


to be influenced by flow [21], yet survival during the river


migration stage is not influenced by flow in our model


because the values we used to inform the relationship were


taken from a field study conducted over three low-flow


years [18]. Thus, the data available do not cover the range


of potential conditions that may be experienced by out


migrating salmon. A similar situation exists for other rela-

tionships such as smolt-to-age-2 mortality that is hypothe-

sized to be an important determinant of year class strength


but is difficult to estimate in the field and is thus represented


by a uniform distribution. This is in contrast to laboratory


studies oftemperature–mortality relationships applied in the


early development and fry rearing model stages where one


of the goals was to examine biological responses over a


range of environmental conditions. One of the strengths of


the IOS model is that it can be used to identify where


knowledge gaps exist and the model is flexible enough to


allow the integration of new data and functional relation-

ships as they become available.


3.2 Influence ofEnvironmental Variables


Escapement was significantly affected by both the 10%


increase and 10% decrease in temperature (F2,2970346, p<


0.001). However, the increase in temperature had a much


greater effect producing a 95.7% reduction in escapement


whereas the decrease in temperature yielded a 11% increase


in escapement (Fig. 4). Varying flow produced a 6.2%


increase and 4.7% decrease in escapement yet these differ-

ences were not statistically significant (F2,29702.19, p0


0.113). Similarly, variation in exports and ocean conditions


did not yield statistically significant differences in escape-

ment with p values of0.656 and 0.114, respectively (Fig. 4).


The lack of significant changes in escapement with a


10% change in flow, exports and ocean conditions may


reflect the type of data used to parameterize these relation-

ships. The functions utilizing these inputs were constructed


from data obtained from observational studies that had large


error estimates associated with responses. Thus, large


changes in these variables are required to produce a signif-

icant response in escapement. Temperature functions were


parameterized with data from controlled experiments that


produced small error estimates. Additionally, temperatures


in the spawning and rearing area are close to the upper


tolerance limit ofChinook salmon and even small changes


have the potential to significantly affect the population.


Management of temperatures in the Sacramento River is


a priority for stabilizing or increasing Chinook salmon pop-

ulations. The Sacramento–San Joaquin Rivers represent the


southern limit of Chinook spawning and stream temper-

atures can often approach the thermal tolerances for certain


life stages [20]. Historically, Chinook salmon could avoid


sub-optimal temperatures by utilizing higher elevation hab-

itats [36]. However, these areas have been eliminated by the
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construction of impassable dams in the foothills of the


Cascade and Sierra Nevada mountains [35]. Thus, under-

standing how population dynamics of Chinook are influ-

enced by temperature-related mortality is essential for


understanding how populations may be impacted by man-

agement actions or natural climate variations that may result


in higher stream temperatures. The simulations conducted


here do not represent any potential management or climate


scenario, but instead demonstrate the utility of the IOS


model for understanding this important driver of Chinook


salmon population dynamics.


4 Summary and Conclusions


Our study developed and used a stochastic life cycle simu-

lation model of winter-run Chinook salmon. The model


brought togetherfieldmonitoring data and laboratory studies


to create six model stages that represent distinct salmon


habitats and life stages. The model was created using


GoldSim software and a free player version is available that


will allow anyone to easily run and explore the IOS model.


The model can be used to simulate population dynamics and


mortality at each life stage for a period ofyears specified by


the user. Our emphasis in developing this model was to allow


managers a means to test and compare among alternative


water management or restoration scenarios. A persistent


problem in the management of anadromous salmonids has


been the use ofprofessional opinion in place ofquantitative


data to identify the life stages and/or habitats that will be


affected by management actions [28]. The development of


the IOS model provides a significant step such as recom-

mended by Good et al. [12] to provide managers with the


tools necessary formanagers to make decisions based on the


best quantitative data available. This was demonstrated by


our simulation ofvariation in environmental parameters that


revealed significant differences in escapement in response to


higher and lower temperatures.


Sensitivity analysis revealed that uncertainty could be


reduced by improving estimation of the mean values and


uncertainty distributions of certain inputs and functional


relationships between environmental variables and biologi-

cal processes. This was particularly apparent for smolt-to-

age-2 survival and ocean harvest that were uniform random


variables. These variables had greater CVs than any other


input and Sobol’ indices indicated they could significantly


influence model output. Additionally, rivermigration surviv-

al was not related to any environmental variables despite


hypothesized relationships with flow because the data used


was collected under a narrow range of conditions. Greater


certainty in these relationships would improve model perfor-

mance and reduce uncertainty in management and recovery


actions based on IOS simulations. Although this model was


specifically developed for winter run, the IOS model struc-

ture could easily be adapted for other salmon populations in


the Sacramento-San Joaquin River system and serve as an


example ofhow life cycle models can improve management


of anadromous salmonids throughout their range. The IOS


model will provide a much needed tool for resource manag-

ers and will continue to improve as more quantitative data


becomes available.
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