Modeled annual loss at export facilities

Species	Yeartype (Sacramento "40-30- 30" Index under ELT Q5 hydrology)	Predicted loss under PA	Predicted loss under COS	Difference in predicted loss (PA-COS)	% change
	Wet	270,759	125,972	144,788	115
	Above Normal	199,562	75,124	124,438	166
Spring-run	Below Normal	43,781	20,859	22,922	110
	Dry	88,278	48,347	39,931	83
	Critical	42,325	23,917	18,408	77
	Wet	29,858	24,319	5,539	23
	Above Normal	52,971	45,799	7,172	16
Steelhead	Below Normal	39,414	32,831	6,583	20
	Dry	44,334	34,267	10,067	29
	Critical	25,617	18,481	7,136	39

Modeled monthly loss at export facilities

CV spring-run Chinook salmon						
Month	Predicted loss under PA	Predicted loss under COS	PA-COS	% change		N
October	45	31	14	48		0
November	0	0	0			Nov
December	0	0	0			Dec
January	0	0	0			Ja
February	919	879	39	4		Fo
March	25,787	27,504	-1,717	-6		I C
April	168,313	64,198	104,115	162		
May	74,038	31,710	42,328	133		
June	1,657	1,650	7	0		J
July	0	0	0			,
August	0	0	0			A
September	0	0	0			Sep

CCV steelhead							
Month	Predicted loss under PA	Predicted loss under COS	PA-COS	% change			
October	260	175	85	48			
November	60	52	8	17			
December	147	167	-21	-12			
January	5,927	5,558	369	7			
February	6,992	6,696	296	4			
March	6,731	7,197	-466	-6			
April	5,586	2,108	3,478	165			
May	3,109	1,326	1,783	134			
June	982	975	7	1			
July	36	37	0	-1			
August	12	12	0	-1			
September	17	17	0	2			

Caveats for modeled loss at export facilities

- Modeling uses length-at-date (LAD) criteria, so much of projected spring-run loss may represent loss of unmarked hatchery fall-run. However, the pattern – approximate doubling of spring-run loss – is still expected, since LAD used for both COS and PA results.
- Steelhead doesn't show as dramatic a change in the annual numbers because most steelhead loss occurs Jan-March, but the approximate doubling is still observed for steelhead in April and May
- San Joaquin basin-origin steelhead migrate almost entirely in April and May, so most of the Southern Sierra Nevada Diversity Group is expected to experience an approximate doubling in loss at the export facilities.

Integration and Synthesis: Spring-run

Step	Apply the Available Evidence to Determine if	True/False	Action
	The proposed action is not likely to produce stressors that have direct or	True	End
A	indirect adverse effects on the environment	False	Go to B
в	Listed individuals are not likely to be exposed to one or more of those		NLAA
в	or indirect consequences of the proposed action	False	Go to C
С	Listed individuals are not likely to respond upon being exposed to one	True	NLAA
	or more of the stressors produced by the proposed action	False	Go to D
D	Any responses are not likely to constitute "take" or reduce the	True	NLAA
D	fitness of the individuals that have been exposed	False	Go to E
Б	Any reductions in individual fitness are not likely to reduce the viability	True	NLJ
Е	of the populations those individuals represent	False	Go to F
F	Any reductions in the viability of the	True	NLJ
	reduce the viability of the species	False	LJ

Key Findings

- 2 out of 3 wild populations at high risk, declining trend
- DCC Gates open more frequently (Dec-Jan), increasing entrainment into South Delta
- Modeled Old and Middle River flows (OMR flows) will be approximately 3,500 to 4,000 cfs more negative during April and May in wetter water year types with the elimination of the I:E ratio.
- OMR flows are modeled to not be positive at any time (monthly average/ exceedance plots).
- PA components are expected to appreciably reduce the abundance and diversity VSP parameters for spring-run populations (and habitat quality).

Water Yeartype	Predicted loss under PA	Predicted loss under COS	PA-COS	% change
Wet	270,759	125,972	144,788	115
Above Normal	199,562	75,124	124,438	166
Below Normal	43,781	20,859	22,922	110
Dry	88,278	48,347	39,931	83
Critical	42,325	23,917	18,408	77

Integration and Synthesis: Steelhead

Step	Apply the Available Evidence to Determine if	True/Fal se	Action	
٨	The proposed action is not likely to produce stressors that have direct or	True	End	•
A	indirect adverse effects on the environment	False	Go to B	•
в	Listed individuals are not likely to be exposed to one or more of those		NLAA	•
в	or indirect consequences of the proposed action	False	Go to C	
С	Listed individuals are not likely to respond upon being exposed to one or	True	NLAA	•
	more of the stressors produced by the proposed action	False	Go to D	
D	Any responses are not likely to constitute "take" or reduce the fitness	True	NLAA	•
D	of the individuals that have been exposed	False	Go to E	
Б	Any reductions in individual fitness are not likely to reduce the viability of	True	NLJ	•
Е	the populations those individuals represent	False	Go to F	
Б	Any reductions in the viability of the	True	NLJ	
1	reduce the viability of the species	False	LJ	

Key Findings

- DPS at moderate risk of extinction
- DCC Gates open more frequently (Dec-Jan), increasing entrainment into South Delta
- Modeled Old and Middle River flows (OMR flows) will be approximately 3,500 to 4,000 cfs more negative during April and May in wetter water year types with the elimination of the I:E ratio.
- OMR flows are modeled to not be positive at any time (monthly average/ exceedance plots).
- OMR flows and steelhead density triggers are not protective of the Southern Sierra Diversity Group
- PA components are expected to appreciably reduce the abundance VSP parameter for steelhead populations of the Sacramento River and San Joaquin River basin

Integration and Synthesis: Steelhead

Step	Apply the Available Evidence to Determine if	True/Fal se	Action
А	The proposed action is not likely to produce stressors that have direct or	True	End
	indirect adverse effects on the environment	False	Go to B
в	Listed individuals are not likely to be exposed to one or more of those	True	NLAA
Б	or indirect consequences of the proposed action	False	Go to C
С	Listed individuals are not likely to respond upon being exposed to one or	True	NLAA
	more of the stressors produced by the proposed action	False	Go to D
D	Any responses are not likely to constitute "take" or reduce the fitness	True	NLAA
D	of the individuals that have been exposed	False	Go to E
Е	Any reductions in individual fitness are not likely to reduce the viability of	True	NLJ
	the populations those individuals represent	False	Go to F
F	Any reductions in the viability of the	True	NLJ
	reduce the viability of the species	False	LJ

Key Findings

Water Yeartype	Predicted loss under PA	Predicted loss under COS	PA-COS	% change
Wet	29,858	24,319	5,539	23
Above Normal	52,971	45,799	7,172	16
Below Normal	39,414	32,831	6,583	20
Dry	44,334	34,267	10,067	29
Critical	25,617	18,481	7,136	39