General approach

Method A -- Use value from Harvey and Stroble 2013

Estimate of wild spring-run as percent of spring-run-sized fish 2|Based on Harvey and Stroble 2013, Table 5c, which shows that 98% of spring

Estimate of spring-run-sized (both wild spring-run and spring-run-sized hatcł $3,321,850$ Based on wild spring-run low estimate
$5,721,850$ Based on wild spring-run high estimate
|Estimate of wild spring-run as percent of spring-run-sized fish
3 Based on wild spring-run low estimate
44 Based on wild spring-run high estimate

Summary of production goals for fall-run hatchery fish released in river

Table 7 from John's SRKW prey analysis, includes all hatchery releases

$\left.$| Hatchery annual Chinook
 releases | General
 goal | Proportion bay |
| :--- | ---: | ---: | ---: | ---: | | Proportion in- |
| :--- |
| river |\quad| Number in- |
| :--- |
| river | \right\rvert\,

J-run-sized fish were not genetic spring-run (95% genetic fall-run, 1% genetic winter-run, and 2% ge। em in cell A 14, discovered simpler method A.
analysis; number based on RBDD-to-Delta survival of 0.5028 in BY 2018 JPE letter) ching the Delta (from both Sac and SJ basins)
late of unmarked hatchery fall-run reaching the Delta -om Harvey and Stroble 2013, Table 5b.)
e spring-run-sized = estimate of unmarked spring-run-sized hatchery fall-run reaching the Delta late linking WR escapement to JPE and SR escapement to a "SR JPE")

רery fall-run) fish reaching the Delta

Fall-run In-river releases only
$12,000,000$
$1,800,000$
$2,680,000$
$1,500,000$
300,000
$18,280,000$

netic late-fall-run).

Spring-run table

Water Yeartype	Predicted loss under COS	Predicted loss under PA	PA-COS	\% change
Wet	125,972	270,759	144,788	115
Above Normal	75,124	199,562	124,438	166
Below Normal	20,859	43,781	22,922	110
Dry	48,347	88,278	39,931	83
Critical	23,917	42,325	18,408	77

Above table multiplied by 0.02 to adjusted to remove unmarked hatchery fish and other wild fish from o Spring-run table -- adjusted

Water Yeartype	Predicted loss under COS	Predicted loss under PA	PA-COS	\% change
Wet	2,519	5,415	2,896	115
Above Normal	1,502	3,991	2,489	166
Below Normal	417	876	458	110
Dry	967	1,766	799	83
Critical	478	847	368	77

CV spring-run Chinook salmon				
Month	Predicted loss under COS	Predicted loss under PA	PA-COS	\% change
October	31	45	15	48
November	0	0	0	--
December	0	0	0	--
January	0	0	0	--
February	879	919	39	4
March	27,504	25,787	$-1,717$	-6
April	64,198	168,313	104,115	162
May	31,710	74,038	42,328	133
	1,650	1,657	7	0
June				0
July	0	0	0	--
August	0	0	0	--
September	0	0	0	--

Adjusted to reflect wilc

CV spring-	
Month	Predicte d loss under COS
October	1
November	0
December	0
January	0
February	18
March	550
April	1,284
May	634
	33
June	
July	0
August	0
September	0

Total
2,519
\% of 100,000
3
$\%$ of 660,000
0
\pm SR (table at left multiplied by 0.02 to adjusted to remove unmarked hatchery fish and other wild fish fr

-run Chinook salmon		
Predicte d loss under PA	PA-COS	\% change
1	0	48
0	0	--
0	0	--
0	0	--
18	1	4
516	-34	-6
3,366	2,082	162
1,481	847	133
33	0	0
0	0	--
0	0	--
0	0	--

5,415
om other runs)

