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Abstract: The authors extend the classical Cormack–Jolly–Seber mark-recapture model to account for both


temporal and spatial movement through a series of markers (e.g., dams). Survival rates are modeled as a


function of (possibly) unobserved travel times. Because of the complex nature of the likelihood, they use


a Bayesian approach based on the complete data likelihood, and integrate the posterior through Markov


chain Monte Carlo methods. They test the model through simulations and apply it also to actual salmon


data arising from the Columbia river system. The methodology was developed for use by the Pacific Ocean


ShelfTracking (POST) project.


Analyse bay´ esienne de donn´ ees de capture-recapture ` a l’aide de

probabilit ´ es de survie d ´ ependant du temps de d ´
eplacement

R´ esum´ e : Les auteurs g´ en´ eralisent le mod` ele de capture-recapture classique de Cormack–Jolly–Seber pour


tenir compte de d´ eplacements spatiaux-temporels signal´ es par des marqueurs (tels que des barrages). Les


taux de survie sont mod´ elis´ es en fonction de temps de d´ eplacement parfois inobservables. Vu la complexi-

t´ e de la vraisemblance, ils optent pour une approche bay´ esienne fond´ ee sur la vraisemblance des donn´
ees

compl` etes et int` egrent la loi a posteriori par des m´ ethodes de Monte-Carlo ` a châıne de Markov. Ils testent


le mod` ele par simulation et l’utilisent pour l’analyse de donn´ ees sur les saumons du r´ eseau hydrographique


de la Columbia. La m´ ethodologie a ́  et´ e d´ evelopp´ ee aux fins du projet POST (Pacific Ocean ShelfTracking).


1 . INTRODUCTION


The Pacific Ocean Shelf Tracking (POST) project (http://www.postcoml.org) is part of the Census


of Marine Life study (http://www.coml.org). In the POST project, acoustic transmitters are surgi-

cally implanted into fish (e.g., salmon smolt). The fish are then tracked during their migration


by a series of listening lines along the ocean shelf. These listening lines record the acoustic-

identification of the fish that pass near the receivers and their times of passage. A complicating


factor in the analysis of the POST data is that sometimes fish do not pass sufficiently close to the


receiver, and hence are not detected. Data are downloaded from the listening lines and are stored


in a database that can be queried by researchers.


The POST project is a combination of two types of mark-recapture experiments. In the first


type of mark-recapture experiment (Lebreton, Burnham, Clobert & Anderson 1992), animals


are initially marked, and then a subset of these animals are recaptured at yearly intervals (for


example). In this type of experiment, the interest is in the temporal dimension of survival. For


example, one may be interested in the survival rates of a species from year to year. In the POST


project, we are also interested in the temporal dimension of survival and this information is


captured by measuring the passage of time between listening lines.


In the second type ofmark-recapture experiment, marked fish are released, and are detected


as they swim past landmarks (Burnham et al. 1987, p. 25). In this type ofexperiment, the interest


is in the spatial dimension of survival. For example, one may be interested in survival rates


between particular dams. In the POST project, the listening lines are placed in fixed locations


which may correspond to interest in the spatial dimension of survival.


This paper considers methods of combining both the temporal and the spatial dimensions of


the problem into a single mark-recapture model. We provide a generalization of the Cormack–


http://www.postcoml.org
http://www.coml.org
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Jolly–Seber model (Cormack 1964; Jolly 1965; Seber 1965). Their model assumes that survival


probabilities between listening lines are homogeneous amongst all animals. In our generaliza-

tion, the travel times of individual animals between listening lines differ amongst animals and


survival may be a function of travel time. Cowen & Schwarz (2005) considered a similar prob-

lem, but they assumed that survival rates between listening lines are independent of travel time.


We do not make this restrictive assumption. We model survival probabilities as a function of


travel times. Pollock, Bunck, Winterstein & Chen (1995) considered Kaplan–Meier estimation


in a context that allows for differential survival and the possibility of relocation of some animals.


We allow for nondetection as in standard mark-recapture models.


A standard likelihood approach is difficult because of the presence ofmultidimensional inte-

grals. A natural way to approach this problem is via a Bayesian framework through the use of


latent (unobservable) variables. A Bayesian approach via simulation avoids the maximization of


likelihoods which may be problematic in high-dimensional problems. Latent variables arise in


the experiment when marked fish go unobserved at listening lines. A complete data likelihood


is easy to construct as it treats the latent variables as though they are observable. We then “in-

tegrate” over the complete data likelihood by obtaining a Markov chain Monte Carlo (MCMC)


sample from the posterior. Brooks, Catchpole & Morgan (2000) provide a review of Bayesian


methods in mark-recapture experiments.


In Section 2, we provide a detailed development of the Bayesian model. The complete data


likelihood is derived where survival probabilities depend on travel times. When the distances


between listening lines vary greatly, the dependence structure is clearly important. Prior distrib-

utions are then defined on the model parameters. Computation is discussed in Section 3. As the


posterior distribution is complex and high-dimensional, we obtain posterior summary statistics


which describe key features in the study. In particular, posterior expectations are approximated


through MCMC methods using WinBUGS software (Spiegelhalter, Thomas & Best 2003). Un-

like the Cormack–Jolly–Seber model, it is shown that nonidentifiability is not a problem for the


proposed Bayesian model. In Section 4, we discuss the topics of model selection and model


adequacy. In Section 5, we provide some examples and demonstrate the reliability of the ap-

proach via simulation. We also provide sensitivity analyses with respect to some of the model


assumptions. We conclude with a short discussion in Section 6.


2. MODEL DEVELOPMENT


Consider a population ofn fishwhere each fish is implantedwith an acoustic transmitter. Without


loss of generality, assume that all fish are released at location j = 0, and that listening lines are

set up at locations j = 1, . . . , m. The observed data for the experiment consist of (ω, Tobs)

where ω = {ωij} is the detection history such that


ωij = 

! 

1 if the ith fish is detected at location j,


0 if the ith fish is not detected at location j


and ωi0 = 1. The vector Tobs = {Tij} corresponds to observed cumulative travel times such


that Tij is the time required for the ith fish to travel from the point of release to location j. When


a fish is not detected, then there is no observed cumulative travel time. We refer to the missing


or latent cumulative travel times as Tmis and let T = (Tobs, Tmis). Therefore T represents the

complete cumulative travel times. Note that when a fish has died (and is therefore not detected),


we still imagine that there is a cumulative travel time associated with the fish. The value is


missing but it represents the cumulative travel time that the fish would have taken had it been


alive.


Associated with (ω, T) are the quantities (Sobs, t) where Sobs = {Sij} is a function of the

detection history data ω and t = {tij} is a function of the complete cumulative travel times T.


The variable Sij denotes the survival status of the ith fish at location j, where Sij = 1 (0) indi-
cates that the ith fish is alive (dead) at location j. Since fish are released alive, we have Si0 = 1.
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Note thatwhereas the entire vectorω is observed, some ofthe entries Sij are latent. This is due to


the fact that an undetected fish may be either alive or dead. As an example, consider the observed


data (ωi0, . . . , ωi5) = (1, 0, 0, 1, 0, 0). In this case, (Si0, . . . , Si3) = (1, 1, 1, 1), but Si4 and Si5


are latent. We supplement the observed Sobs with the missing or latentSmis to give the complete


survival history S = (Sobs, Smis). The variable tij = Tij − Ti,j−1 denotes the interval travel


time for the ith fish from location j − 1 to j. Because some of the Tij may be missing, this im-

plies that some of the tij may be missing. In fact, there are at least as many missing tij as there

are missing Tij . As an example, consider (Ti0, Ti1 , Ti2, Ti3, Ti4, Ti5) = (0, x, NA, NA, y, z)

where NA denotes “NotAvailable”. Then (ti0, ti1 , ti2, ti3, ti4, ti5) = (0, x, NA, NA, NA, z−y).

Therefore, the vector t consists of both observed and latent data. Missing data issues have been


previously considered in mark-recapture experiments. For example, Bonner & Schwarz (2006)


showed how the classical Cormack–Jolly–Seber model can be extended for time-dependent in-

dividual covariates which form a set of missing values when animals are unobserved. Dupuis


(1995) used directed graphs for the Bayesian analysis ofmark-recapture experiments of the first


type (Lebreton, Burnham, Clobert & Anderson 1992).


We now describe the two primary parameters of interest in the model. We let pj denote the


probability ofdetection at the jth location. As the acoustic transmitters are identical and the fish


comprise a sample from an underlying population, one typically assumes that the probability pj


does not depend on fish i. In some instances, it may be reasonable to assume a common proba-

bility of detection (i.e., pj = p for all locations) although the general case causes no additional

difficulty. The second parameter of interest concerns survival, where φij denotes the survival


probability of the ith fish when travelling from location j− 1 to location j given that the fish was


alive at location j− 1. In Cowen & Schwarz (2005), the modelling assumption φij = φj implies


that survival probabilities are independent oftravel times. In our paper, we considerφij = f(tij)

where f is a specified decreasing parametric function. Therefore, the longer that it takes a fish


to travel between locations j − 1 and j, the greater the chance that the fish does not survive. In


our datasets, travel times are measured in days, and we define φij = q

tij


j such that qj denotes


the daily survival probability when travelling between locations j − 1 and j. Our modelling


assumption implies that survival is independent across days. Therefore, the proposed framework


reduces the primary parameters of interest to (p, q) where p = {pj} and q = {qj}. Gimenez


et al. (2006) consider a penalized spline approach when modelling survival probabilities in a


semi-parametric fashion.


In Cowen & Schwarz (2005), an observed likelihood is obtained based on the observed data


(ω, Tobs). The observed likelihood is complex as it involves integrals with respect to the latent


cumulative travel times Tmis. We take an approach based on the complete data likelihood as


in van Deusen (2002). The complete data likelihood treats latent variables as though they are


available, and is especially well suited to Bayesian analyses (as will be seen). An advantage of


the complete data likelihood over the observed likelihood is that it has a much simpler form. In


our approach, we develop the complete likelihood based on (ω, S, t).


In obtaining the complete data likelihood, let [A | B] generically denote the density function

or probability mass function corresponding to A given B. In addition, let ωi = (ωi0, . . . , ωim),

Si = (Si0, . . . , Sim), and Ti = (Ti0, . . . , Tim). Then the complete data likelihood is given by


[ω, S, T] = 
"n


i=1

#

ωi, Si, Ti


$


"n

i =1 

#

ωi | Si, T
i
$

[Si, Ti]

" n 

i =1 

#

ω i | Si, T i

$

[S i |
Ti][Ti]
(1)


where the independence of fish is assumed and the expressions in (1) are based on conditional


probability. The complete data likelihood for the ith fish is therefore the product of three terms;
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the conditional probability mass function of detection history given survival and travel time his-

tory, the conditional probability mass function of survival history given travel time history and


the travel time density. We now derive expressions for each of the three terms in the product (1).


The first term is given by


[ωi | Si, Ti] = [ωi | Si]


= 
"m


j=1[ωij | Sij ]


= 
" m


j=1(p

ωij


j (1
− pj)
1−ωij )Sij


(2)

where the key assumption in (2) is that detection at location j does not depend on other locations,


and we note that when a fish dies (i.e., Sij = 0), then detection is impossible and there is no


contribution to the complete data likelihood. Now


[Si | Ti] = [Sim | Si0, . . . , Si,m−1 , Ti][Si,m−1 | Si0, . . . , Si,m−2, Ti] · · · [Si1 | Si0, Ti]


= [Sim | Si,m−1 , Ti][Si,m−1 | Si,m−2, Ti] · · · [Si1 | Si0, Ti]


= 
"m


j=1[Sij |
Si,j−1 , Ti,j−1 , Tij ]


= 
" m


j=1(φ

S
ij


ij (1 − φij)
1−Sij )
Si,j−1


= 
"m


j=1(q

t
ij Sij 

j
 (1 − q 
tij

j
)1
−Sij )Si,j
−1


(3)

where tij = Tij − Ti,j−1 and there is no survival contribution to the likelihood when a fish has


already died (i.e., Si,j−1 = 0). Putting (1), (2) and (3) together, we have the complete data


likelihood


[ω, S, T] = 
n


%

i=1


[Ti] 
m

%

j=1


(p
ωij 

j
 (1 − pj)

1−ωij )Sij (q


tij Sij 

j (1 − q

tij 

j )1−S
ij ) Si,j−1 . (4)


The last step in the determination of the complete data likelihood (4) is the specification


of [Ti]. Note that it is preferable to model [Ti] rather than [ti] = [ti0, . . . , tim] since there

are at least as many missing tij as missing Tij and therefore we would lose information by


modelling [ti]. As the fish arise from the same population and travel times are nonnegative, it


may be reasonable to consider a multivariate lognormal distribution. The convenient covariance


structure in the multivariate normal distribution is appealing as one might imagine that a fish that


is fast (slow) in travelling between two locations may be fast (slow) in travelling between other


locations. Specifically, we assume


&

log(Ti1), . . . , log(Tim)

'"


∼ Normalm(µ, Σ), (5)


subject to the constraint 0 < Ti1 ≤ · · · ≤ Tim where a covariance structure is explicitly allowed


between the log(Tij). A simpler (but perhaps less realistic) alternative to (5) is (Ti1 , . . . , Tim) ∼


Normalm(µ, Σ) subject to the same constraint 0 < Ti1 ≤ · · · ≤ Tim.


In a Bayesian analysis, prior distributions are required for the unknown parameters. Some-

times, strong prior information may be available (e.g., a working knowledge concerning the


detection probabilities of listening lines) and it is useful to incorporate this knowledge as can be


done in a Bayesian framework. In this paper, we suggest default prior distributions which tend to


be diffuse. Diffuse distributions are appealing in that they allow the data to drive the inference.


Referring to (4) and (5), we consider the prior density


[p, q, µ, Σ] = [p] [q] [µ] [Σ] (6)
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where prior independence is assumed. As the p and q are probabilities defined on the simplex, it


is customary to assume Beta priors. Specifically, we assume independent detection probabilities


pj, where


[pj ] ∝ p
ap−1

j
 (1 − pj)

bp−1


and independent daily survival probabilities qj where


[qj ] ∝ q
aq−1

j
 (1 − qj)

bq−1 .


The a and the b may be prespecified based on one’s subjective understanding of the listening


devices and the daily survival rates. We impose a diffuse Normalm(0, σµI) prior for the mean


log travel time distribution [µ] where σµ is set large and the normal distribution is constrained


according to µ1 ≤ · · · ≤ µm. We set Σ−1 ∼ Wishart((1/m)I, m). Having specified the


complete data likelihood (see (4) and (5)) and the prior (6), the ingredients for aBayesian analysis


have been determined.


3. COMPUTATIONS


We re-express the complete data likelihood [ω, S, t] in (4) as 
#

Xobs, Xmis | p, q, µ, Σ
$ 

to empha-

size the dependency on the unknown parameters
and to emphasize that (ω, S, t) consists
ofboth


observed and missing values.
The Bayesian paradigm then gives the following expression for
the


posterior


#

p, q, µ, Σ | Xobs
$ 

∝ 
#

Xobs | p, q, µ, Σ
$ #

p, q, µ, Σ
$

= 
(#

X obs , X mis | p, q, µ, Σ
$ # 

p, q, µ, Σ 
$


dXmis.


(7)


In theory, the posterior density (7) provides a complete description of the uncertainty in


the parameters defined in the mark-recapture experiment. However, the dimensionality and the


complexity of (7) is such that it is impossible to gain any meaningful insight. Alternatively, we


consider the following expression


#

p, q, µ, Σ, Xmis | Xobs
$ 

∝ 
#

p, q, µ, Σ, Xobs, Xmis

$ 

∝ 
#

Xobs
, X
mis | p, q, µ,
Σ
$ #


p, q, µ, Σ
$


(8)


where the last expression in (8) is the
product
of the complete
data
likelihood and the prior


density which are familiar and simple forms.


Therefore, if we are able to sample variates (p, q, µ, Σ, Xmis) from (8), then we can use the


sampled components (p, q, µ, Σ) as realizations from the posterior distribution. However, sam-

pling directly from (8) is a difficult/impossible task, and instead, a Markov chain is constructed


which has the posterior as its stationary distribution. Fortunately, this is easily implemented using


WinBUGS software (Spiegelhalter, Thomas & Best 2003). In WinBUGS, the user needs only to


specify the formofthe complete data likelihood, the prior and the observed data. WinBUGS then


produces an appropriate Markov chain. The usermay then proceed with the Markov chain output


as seen fit. For example, output may be averaged to provide estimates of posterior expectations


and marginal posterior densities may be approximated using density estimation techniques. We


may even obtain posterior expectations of latent variables. Note that whereas classical methods


(e.g., estimation and testing) often rely on asymptotic distributions of statistics, a sample from


the posterior is a sample from the distribution of interest. An overview of the use of MCMC


methods is provided in the edited text by Gilks, Richardson & Spiegelhalter (1996). Carlin &
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Louis (2000) and Gelman, Carlin, Stern & Rubin (2003) provide further information on MCMC


and give modern accounts of the Bayesian approach to statistics. A detailed description of the


WinBUGS code for the POST project is given in Muthukumarana (2007). There are different


versions of WinBUGS and only the full version 1.4.1 was able to handle the complexity of our


model. When a model is not too complex, WinBUGS makes use of the Gibbs sampling algo-

rithm to generate a Markov chain. With our model, the full conditional distributions required for


Gibbs sampling have nonstandard forms. In this case, WinBUGS makes use of the Metropolis–


Hastings algorithm, where Markov chain output contains streams of duplicate values due to the


acceptance/rejection step in the algorithm. We note that conditional on Sij and Si,j−1, there are


two Bernoulli terms in the complete data likelihood. More specifically, we can express (4) as


[ω, S, T] = 
n


%

i=1 

[Ti]

m

%

j=1


(Sijpj) 
ωij (1 − Sijpj)

1 −ωij (Si,j−1q

tij


j )Sij (1 − Si,j−1q
tij 

j )
1−Sij .

The recognition of this fact enables a simpler expression for the complete data likelihood and


dramatically reduces the computational time. We also note that our model contains constrained


distributions for the log(Tij) and the µj variables. As constraints are not a standard feature


of WinBUGS, we overcame this difficulty through the use of indicator variables. Using this


approach, it is not necessary to determine the norming constant for the constrained distribution.


WinBUGS coding can initially be difficult; we hope that our code provides a beginning tem-

plate for future Bayesian analyses in mark-recapture. We also note that some preprocessing was


required for the data considered in Section 5.2. It was necessary to extract (ω, S) from Tobs


prior to running WinBUGS. An R code developed for the preprocessing stage is provided in


Muthukumarana (2007).


3.1. Nonidentifiability.


It is well known that final survival and capture rates are confounded in the classical Cormack–


Jolly–Seber model as a result of nonidentifiability. To understand the problem at a deeper level,


we recall that the observed likelihood in that model is not the same as the complete data like-

lihood (4). The observed Cormack–Jolly–Seber likelihood differs in that it does not contain


the cumulative travel-time distributions [Ti] appearing in (4). Secondly, the individual survival


probabilities φij = q

t
ij
j in (4) are replaced with the simpler probabilities φij = φj . Finally,


the observed likelihood (which is difficult to write down in the general case) may be derived


from the complete data likelihood (4) by summing over cases that are not directly observed.


For example, the term in the complete data likelihood corresponding to the unobservable case


(Sim = 1, ωim = 0) is added to the term in the complete data likelihood corresponding to the


observable case (Sim = 0, ωim = 0). As a result, the terms pm and φm only appear in the


observed data likelihood as the product pmφm. The implication is that the data only allow us to


learn about the product pmφm and not about the individual parameters pm and φm. In this case,


we say that pm and φm are nonidentifiable.


In general, the typical consequences ofnonidentifiability include ridges in the likelihood sur-

face and multimodality which are problematic for estimation. In a Bayesian context, these sorts


of problems may not be as problematic as in the classical context. In theory, all that one needs


to do in a Bayesian analysis is integrate to obtain the required posterior summaries. However,


from a practical perspective, nonidentifiablity still may cause problems in a Bayesian analysis.


For example, MCMC algorithms may have difficulty traversing parameter spaces with elongated


likelihoods.


Swartz, Haitovsky, Vexler& Yang (2004) have demonstrated that the use of informative (i.e.,


nondiffuse) priors may be effective in mitigating the effects of nonidentifiability in Bayesian


models. In our application, we recommend the use of informative priors particularly for the


detection probabilities pj . There is often good prior knowledge concerning the capabilities of


the listening lines and the acoustic transmitters.
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In view ofthe above discussion, there is an appealing by-product ofthemodelling assumption


φij = q

tij


j with respect to nonidentifiablity. In the Cormack–Jolly–Seber model, if one replaces


φij = φj with φij = q

tij


j , the nonidentifiablity disappears because the product pmqtim

m appearing


in the likelhood differs over the fish i = 1, . . . , n. This result is somewhat paradoxical as the


model with φij = q

tij


j is more complex than the traditional Cormack–Jolly–Seber model with


φij = φj, yet we gain better insight regarding the individual parameters with the more complex


model. In the model proposed in this paper (which is a generalization of the Cormack–Jolly–


Seber model), it follows that there is no problem with nonidentifiability.


4. MODEL SELECTION AND MODEL ADEQUACY


The topics of model selection and model adequacy are of fundamental importance in applied


statistics and these topics are becoming increasingly important with the consideration of more


complexmodels. However, in Bayesian statistics, amyriad ofapproaches have been proposed for


bothmodel selection and assessing model adequacy, and it is fair to say that there is no consensus


on the “correct” approach to either of these problems. In this section, we provide some general


remarks on model selection and model adequacy, and we provide some concrete suggestions that


are relevant to the problem at hand.


4.1. Model selection.


A principled Bayesian approach for comparing a finite number of competing models involves


the calculation of the posterior probabilities of the models. When equal prior probabilities are


assigned to each of the models, then the posterior comparison of two models (i and j) reduces to

a study of the Bayes factor


Bij = 

( 

f i
(x | θi)πi(θi) dθ
i

(

fj(x | θj)πj(θj) dθj


, (9)


where fi(x
| θi) is the likelihood of model i with parameter θi, and πi(θi) is the prior density

corresponding to parameter θi. When the Bayes factor Bij is greater (smaller) than 1, this pro-

vides evidence for (against) model i relative to model j. A major practical difficulty with the use


ofBayes factors is the calculation of the Bayes factorBij . The expression (9) can rarely be eval-

uated analytically and it is typical to attempt to approximate Bij . For example, a method that


is often unstable involves the approximation of the numerator by averaging fi(x | θ
(k)

i ) where

θ
(k)

i is the kth iteration of θi from the prior distribution. Naturally this approach presupposes


a proper prior. Methods of approximation based on output from MCMC simulation have also


been proposed. However, even these methods are fraught with difficulties. For example, we have


experienced unstable estimation and overflow with the complex models proposed in this paper.


Another serious problemwith the use ofBayes factors is one ofcalibration when improper priors


are used. An overview of Bayes factors is given by Kass & Raftery (1995).


Due to the practical difficulties with the use of Bayes factors in complex models, a num-

ber of alternative diagnostics have been proposed that are often viewed as approximations to


Bayes factors. For example, the diagnostics AIC (Akaike 1973), BIC (Schwarz 1978) and DIC


(Spiegelhalter, Best, Carlin & van der Linde 2002) have all received prominent attention in the


literature.


Amongst the numerous model selection diagnostics, it appears that the DIC is the most


widely used in WinBUGS applications. In fact, WinBUGS provides DIC values as an option


in its Inference menu. Unfortunately, DIC is unavailable in WinBUGS with our model due to


the complexity of the model where some of the stochastic nodes (e.g., survival status Sij) are


discrete.


One of the main thrusts of our paper is that complex mark-recapture models can be analyzed


fairly easily using WinBUGS software. Therefore we believe that it would be against the spirit
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of the paper to require the investigator to fit models using WinBUGS and then carry out model


selection using some sophisticated procedure outside ofWinBUGS. For example, the method of


Laud & Ibrahim (1995) based on posterior predictive discrepancies requires variate generation


from marginal distributions outside of WinBUGS. For this reason, we want a model selection


approach that can be easily implemented within WinBUGS.


For model selection in our mark-recapture models, we suggest the use of the BIC diagnostic.


The BIC diagnostic is a little more sophisticated than AIC as it takes sample size into account.


Denote the complete data likelihood (4) by L(θ) where θ = (ω, S, T) and let θ(i) represent the


ith realization ofθ from MCMC simulation. Then the BIC is approximated by


BIC = p log(n∗) − 
2


N 

N

)

i=1


logL(θ(i)), (10)


where p is the number of parameters in the model (including missing values), n∗ is the number


of observed data values, and N is the number of MCMC simulations. A model with a smaller


value of(10) is a preferred model. Note thatp log(n∗) may be viewed as a penalty term that takes


the dimensionality of the model into account. Note also that the Bayesian formulation of BIC


is different than the classical version which evaluates logL at the maximum likelihood estimate


rather than averaging logL over the posterior. Again, an important feature is that (10) may be


evaluated directly in WinBUGS by coding BIC. Some discussion of the use of BIC and other


model selection diagnostics in Bayesian applications is given by Aitkin (1991) and DeSantis &


Spezzaferri (1997).


4.2. Model adequacy.


As problematic as model selection may be with complex Bayesian models, the assessment of


model adequacy in complex Bayesian models is even more problematic. A possible explanation


for this is that a posteriori testing of model adequacy is not a Bayesian construct and may be


seen as violating the Bayesian paradigm. From the point ofview ofa subjective Bayesian purist,


any uncertainty concerning a model ought to be expressed via prior opinion. For example, if


an experimenter is unsure whether the sampling distribution of the data is normal or Student,


then the uncertainty might be expressed via a mixture. In theory, if we are able to express


uncertainty in a model (and this includes both the sampling model and the parameters given the


sampling model), then there is no need to assess model adequacy, as all possible models have


been considered and our inferences are subjective. However, from a practical point of view,


it is typically difficult or impossible to determine the space of possible sampling models and


parameters, and to assign prior opinion to the space.


Therefore, what does the practical Bayesian do in the context of model assessment? An


honest answer may be that the assessment of complex Bayesian models is not a routine activ-

ity. When Bayesian model assessment is considered, it appears that the prominent modern ap-

proaches are based on the posterior predictive distribution (Gelman, Meng & Stern 1996). These


approaches rely on sampling future variates y from the posterior predictive density


f(y | x) = 

*

f(y | θ)π(θ | x) dθ, (11)


where x is the observed data, f(y | θ) is the sampling density for y and π(θ | x) is the posterior

density. In MCMC simulation, approximate sampling from (11) proceeds by sampling yi from


f(y | θ(i)), where θ(i) is the ith realization of θ from the Markov chain. Model assessment then


involves a comparison of the future values yi versus the observed x. One such comparison


involves the calculation ofposterior predictive P-values (Meng 1994).


A major difficulty with posterior predictive methods concerns a double use of the data.


Specifically, the observed data x is used both to fit the model giving rise to the posterior density


π(θ | x) and then is used in the comparison of yi versus x. For this reason, some authors prefer
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a cross-validatory approach (Gelfand, Dey & Chang 1992) where the data x = (x1 , x2) are split

so that x1 is used for fitting and x2 is used for validation.


We take the view that in assessing a Bayesian model, the entire model ought to be under


consideration, and the entire model consists ofboth the sampling model of the data and the prior.


We also want a methodology that does not suffer fromdouble use ofthe data. Finally, we want an


approach that is not too difficult to implement; as we have argued, our complex mark-recapture


models are easily fit using WinBUGS. For themodels proposedhere,we recommendan approach


that is similar to the posterior predictive methods but instead samples “model variates” y from


the prior predictive density


f(y) = 

*

f(y | θ)π(θ) dθ, (12)


where π(θ) is the prior density. This approach was advocated by Box (1980) before simulation


methods were common. Note that generating from (12) presupposes proper priors which are


required in WinBUGS.


It is not difficult to write R code to simulate y1 , . . . , yN from the prior predictive density


in (12). It is then a matter of deciding how to compare the yi against the observed data x.


We advocate simple comparisons that are of direct interest to the application. For example,


one might compare the mean observed cumulative travel time T2 =

+n


i=1 Ti2/n at the second

listening line to the histogram formed by the N variates T2 obtained
from the prior predictive


simulation. Naturally, as the
priors become more diffuse, it becomes less likely to find evidence

of model inadequacy. We investigate the assessment of model adequacy on the Columbia river


data in Section 5.2.


5. EXAMPLES


5.1. Simulated data.


Various simulation studies were carried out. We report on one such simulation. A dataset corre-

sponding to n = 500 fish with m = 5 listening lines was simulated using the R code. Detection


probabilities at each listening line were set to pj = p = 0.8, while daily survival probabilities be-

tween listening lines were set to qj = q = 0.99, j = 1, . . . , m. The logarithms of the cumulative


travel times between the listening lines were generated from the constrained multivariate normal


distribution (5) with µ = (1, 2, 3, 4, 5)$ and Σ =( σij) where σii = 1.0 and σij = 0.8 for i %= j.


We then generated a survival history S based on Sij ∼ Bernoulli (q

tij


j ) and a detection history

ω based on ωij | Sij = 1 ∼ Bernoulli (pj). Having generated the data as described, we parti-

tioned the data into the observed and missing components of (ω, S, T); this is necessary for the

construction of the complete data likelihood (4). In the simulated data, there are 5(500) = 2500

cumulative travel times Tij of which 858 are missing. Therefore we have considered a chal-

lenging test case with a large proportion of missing values. At the fifth listening line, a typical


survival probability is φ i5 = qT
i5 −Ti4


5 = (0.99)exp(5)−exp(4) ≈ 0.39.


For the analysis ofthe simulated dataset, we first consider the “full model” which contains all


of the parameters described in the paper. Uniform prior distributions for the parameters pj and


qj were assigned according to pj ∼ Beta(1.0, 1.0) and qj ∼ Beta (1.0, 1.0), j = 1, . . . , 5 with


independence across the distributions. The specified priors provide a good test of the robustness


of the methods with respect to the priors as the corresponding prior means E(p) = E (q) = 1/2

are not close to the preset parameter values. The cumulative travel times are modelled as in (5)


and the rest ofthe prior settings are given as described in Section 2. The model was fit using Win-

BUGS software where 500 iterations were used for the burn-in period. The posterior estimates in


Table 1 were based on 8000 iterations which required approximately 15 minutes of computation


on a personal computer. We observe that the posterior means of the primary parameters pj and


qj are close to the preset values. The posterior means of the secondary parameters µ and Σ also


appear in agreement with the preset values.
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TABLE 1 : Estimates of posterior means and posterior standard deviations in Example 5.1.


Parameter Mean SD Parameter Mean SD


p1 0.77 0.02 Σ11 0.91 0.06


p2 0.79 0.02 Σ12 0.79 0.05


p3 0.81 0.02 Σ13 0.77 0.05


p4 0.82 0.02 Σ14 0.77 0.05


p5 0.76 0.02 Σ15 0.77 0.06


q1 0.99 0.00 Σ22 1.01 0.06


q2 0.99 0.00 Σ23 0.84 0.06


q3 0.99 0.00 Σ24 0.80 0.06


q4 0.99 0.00 Σ25 0.85 0.06


q5 0.99 0.00 Σ33 0.94 0.06


µ1 1.02 0.04 Σ34 0.82 0.06


µ2 2.06 0.04 Σ35 0.81 0.06


µ3 3.06 0.04 Σ44 0.95 0.06


µ4 4.02 0.04 Σ45 0.83 0.06


µ5 5.02 0.04 Σ55 0.99 0.07


We now wish to investigate aspects of the model selection diagnostic BIC in (10). With


simulated data, we can investigate the diagnostic since we know the true model from which the


data were generated. For the full model considered above with the uniform priors, we obtained


BIC = 9640.3. Knowing the way that the data were simulated, we also fit the “true model” with


φij = qtij and pij = p where independent uniform priors were assigned to p and q. For the true


model, we obtained BIC = 9557.5. Therefore the BIC diagnostic preferred the true model over


the full model.


We next fit an even simpler model with φij = φj and pj which is analogous to the Cowen


and Schwarz (2005) model as it does not consider survival as a function of travel time. In


this case, BIC = 9725.2. Therefore the BIC diagnostic rightly suggests that the travel time


assumption is important. In fact, the full model is preferred to the model analogous to Cowen


and Schwarz (2005).


Finally, we consider the sensitivity of the analysis with respect to the travel time assump-

tion (5). The analysis here is the same as in the full model analysis except that we assume


the simpler travel time distribution (Ti1 , . . . , Tim) ∼ Normalm(µ, Σ) subject to the constraint

0 < Ti1 ≤ · · · ≤ Tim. Under the simpler assumption, the posterior means of the pj and qj are


comparable to the posterior means in the analysis of the full model and BIC = 9763.3. This


suggests that even though the overall fit of the simpler model is not good (in terms of the BIC),


the precise shape of the distribution of the cumulative travel times is not a critical assumption in


the estimation of the primary parameters of interest.


5.2. Columbia river data.


The model was then fit to data obtained from the Columbia River system. FromApril 25, 2001 to


May 30, 2001, n = 324 radio-tagged chinook salmon were released from the Rock Island Dam.


Data were recorded at listening lines established at the m = 3 dams downstream at Wanapum,


PriestRapids, andHanfordReach. For example, corresponding to fish j = 4, we have data values


ω4 = (1, 1, 0, 0) and (T40, T41 , T42, T43) = (0, 6.1, NA, NA). This implies that the fourth fish


was released at the Rock Island Dam and then detected at Wanapum but was undetected at both


Priest Rapids and Hanford Reach. The fish took 6.1 days to reach Wanapum from the Rock


Island Dam. The data gives rise to the survival history S4 = (1, 1, NA, NA) since we know
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that the fish survived up to Wanupum, but it is unknown whether the fish survived up to Priest


Rapids or Hanford Reach. The interdam distances are approximately 37.6 miles, 18.7 miles,


and 15.0 miles, respectively. In the Columbia river data, there are 3(324) = 972 cumulative


travel times Tij of which 294 are missing. Cowen & Schwarz (2005) also studied this dataset


in the context of radio failure. Here, we ignore radio failure, and therefore survival is a function


of both actual survival and radio failure. In this example, we fit a model which allows for the


possibility ofvarying detection probabilities pj and varying daily survival probabilities qj at each


of the dams. Uniform priors were assigned to the detection and daily survival probabilities. The


remaining priors are given as in Section 2. We remark that it is possible to enhance the model by


stratifying the salmon according to their release date, although we have not done so.


TABLE 2: Estimates of posterior means and posterior standard deviations in Example 5.2.


Parameter Mean SD


p1 0.96 0.03


p2 0.97 0.03


p3 0.98 0.02


q1 0.99 0.00


q2 0.91 0.01


q3 0.77 0.02


µ1 2.23 0.03


µ2 2.60 0.03


µ3 2.78 0.03


Σ11 0.19 0.02


Σ12 0.16 0.02


Σ13 0.15 0.02


Σ22 0.17 0.02


Σ23 0.16 0.02


Σ33 0.18 0.02


Estimates of the posterior means of the parameters are given in Table 2. These are based


on a MCMC simulation using WinBUGS with a burn-in period of 500 iterations followed by


4000 iterations. We observe that the detection probabilities pj are high and are similar across


the dams. We note that the daily survival probabilities q1, q2, and q3 decrease and this appears


to make biological sense. With respect to the estimated travel-time parameter µ, we refer to


Figure 1 which provides density plots of the observed travel times between dams. The average


travel times between the three dams are 9.9, 3.6, and 1.9 days, respectively. These values are


roughly in agreement with MCMC estimates of the mean interval travel times (e.g. E(ti1) ≈


exp(µ1 + Σ11/2)) which are 10.3, 4.6, and 2.7 days, respectively. Figure 2 provides an estimate


ofthe posterior density ofµ1 using a kernel smoother fromWinBUGS. The plot suggests a nearly


symmetric unimodal distribution as might be expected. We observe strong positive correlations


in the Σ matrix; this is expected as we are modelling cumulative travel times.
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FIGURE 1: Density plots for observed travel times tij (days) in Example 5.2.


FIGURE 2: Estimate of the posterior density ofµ1 in Example 5.2.


It is instructive to look at some plots related to the MCMC simulation. A trace plot for µ1


is given in Figure 3. The trace plot appears to stabilize immediately and hence provides no


indication of lack of convergence in the Markov chain. In Figure 4, an autocorrelation plot for


µ1 is provided. The autocorrelations appear to dampen quickly. This provides added evidence


of the convergence of the Markov chain and also suggests that it may be appropriate to average


Markov chain output as though the variates were independent. Similar plots were obtained for


all of the parameters in the model. In addition to the diagnostics described, multiple chains were
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obtained to provide further assurance of the reliability of the methods. For example, the Brooks–


Gelman–Rubin statistic (Brooks & Gelman 1997) gave no indication of a lack of convergence.


As discussed in Section 3.1, nonidentifiability poses neither a theoretical nor a practical ob-

stacle for the model proposed in this paper. To investigate the degree ofconfounding between the


final capture rate p3 and the final daily survival probability q3, we calculate the posterior corre-

lation between p3 and q3 using the output from the MCMC simulation. The posterior correlation


is found to be 0.02 which indicates a lack of confounding between the final capture rate and the


final daily survival probability.


FIGURE 3: Trace plot for µ1 based on MCMC simulation in Example 5.2.


FIGURE 4: Autocorrelation plot for µ1 based on MCMC simulation in Example 5.2.


In assessing model adequacy, we have mentioned that a model with diffuse priors will almost


always be viewed as adequate. The reason for this is that a model with diffuse parameters gives


rise to diffuse data, and observed data is unlikely to be seen as inconsistent when compared to


diffuse data. To provide a more stringent test, we consider a modification of our model where


subjective priors are introduced. Since we know a priori that the listening lines and acoustic


devices are of high quality, we assign prior probabilities of detection according to independent
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[pj ] ∼ Beta(19, 1). We also know that daily survival probabilities are high and we therefore


set independent [qj ] ∼ Beta(18, 2). The prior distribution for the log cumulative travel times is


a constrained multivariate normal distribution with mean vector and variance covariance matrix


given by the posteriormeans from the initial analysis. This distribution is roughly consistentwith


the data and is far less diffuse. With this model, the posterior means of the primary parameters


are very close to estimates provided in Table 2. This suggests that the data are informative and


dominate the inferences. To assess model fit, we generated 20 datasets from the prior predictive


density (12) according to the model described above, and compared the generated data with the


observed data. Although there are many features of the data that could be checked, we focus on a


study of detection history ω and cumulative travel time T. For ω, Figure 5 provides a histogram


of the proportion of fish detected in the simulated datasets. For each simulation, the proportion


detected is given by

+324


i=1


+3

j=1 ωij/(924). The proportion detected for the observed data is


0. 70 which appears consistent with the model. For T, there appears to be no limit on the number


of features that one may
check. For illustration we consider the travel time to the first dam.


Figure 6 provides a boxplot for each generated dataset using the 324 total travel times Ti1 . The


boxplot for the observed data is also included and appears to be consistent with the generated


data.


FIGURE 5: Histogram of the proportion offish detected for the observed data and the 20 generated


datasets in Example 5.2.


To check whether the travel-time assumption is relevant to the Columbia river data, we fit a


second model that is analogous to the model considered by Cowen & Schwarz (2005). We keep


everything the same as in the initial model with the diffuse priors, but let φij = φj rather than


φij = q
tij


j . For the Cowen and Schwarz (2005) model, we obtain BIC = 3988.8, which is much


worse than the initial model with BIC = 2521.1. The extremely bad fit of the Cowen & Schwarz


(2005) model may have been anticipated, as Figure 1 suggests large travel time differences be-

tween the three dams.


6. DISCUSSION


The Bayesian framework provides a straightforward approach to dealing with the complex ob-

served likelihood which requires integration over the unobservable travel times. Furthermore,


the Bayesian approach provides a convenient way of estimating the correlation in travel times
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between sampling locations. This addresses an important biological question as to whether some


fish are intrinsically faster, or whether travel times are independent random events.


FIGURE 6: Boxplots of the travel time Ti1 to the first dam for the observed data and the 20 generated


datasets in Example 5.2.


An alternative approach might be based on the EM algorithm as used by van Deusen (2002).


However, the computation of the expected log-likelihood is not straightforward and numeri-

cal methods would likely be needed. In our Bayesian approach, Markov chain Monte Carlo


(MCMC) methods avoid the necessity of numerical integration.


Finally, ourmodel is easily extended to allow for individual time-independent covariates such


as initial body mass mij by modelling qij = f(mij) for some function f. Work is underway


to extend our formulation to allow for time-dependent individual covariates and to more fully


investigate the choice off. The revised model must account for missing values both in the travel


times and in the individual covariates.


It is not immediately clear how our model might be extended to a two-dimensional spatial


setting. For example, listening lines may be set up in the woods to track the movements of


animals. In this case, in addition to death and radio tag failure, lack of detection may be due to


nonstandard travel paths. We consider this to be an open research problem.
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Discussion:

Towards a Bayesian analysis template?


Olivier GIMENEZ


1 . INTRODUCTION


I would like to congratulate Drs Muthukumarana, Schwarz and Swartz (henceforth MSS) for


extending classical mark-recapture models to estimate survival in a complex situation arising


from fish monitoring. Because of their model likelihood complexity, MSS used Markov chain


Monte Carlo (MCMC) simulations to implement a Bayesian analysis of their data. The Bayesian


framework in association with MCMC algorithms is becoming increasingly popular for fitting


complex models such as models with latent structures. Two of the main reasons for this are


that (i) MCMC methods are well suited to circumvent the issue of high-dimensional integrals


involved in these likelihoods and, (ii) fast and powerful computers along with flexible and


reliable programs are now available allowing the relatively time-realistic and easy implementa-

tion of various MCMC routines. This being said, the possibility to fit complex models comes


with methodological issues that should not be overcome. In that sense, MSS have provided


an impressive work that deserves to be emphasized. In this discussion, I comment on several


technical points and give general considerations that were inspired by the MSS paper.


2. TECHNICAL POINTS


2.1. Model selection.


To determine whether a model specifying survival as a function of travel times was better


supported by the data than without, MSS relied on BIC as it was easy to implement within


WinBUGS. As acknowledged by MSS, this was one choice among many alternatives, and this


is precisely the Achilles’ heel of Bayesian analyses. Indeed, many procedures exist and none


of them seems to be as consensual as AIC is in the statistical ecology literature (Burnham &


Anderson 2002). Basically, there are two groups of methods. One produces a value for each


model to be compared among a set of models (e.g., mean square predictive error: Gelfand &


Ghosh 1998; DIC: Spiegelhalter, Best, Carlin & van der Linde 2002; BIC: for example, Link


& Barker 2007), and the other performs automatic exploration of the model space (e.g., Gibbs


variable selection: George & McCulloch 1993; reversible jump MCMC: Green 1995). Most




22 MUTHUKUMARANA, SCHWARZ & SWARTZ Vol. 36, No. 1


often, we adopt one option or another because it is convenient to calculate, or because we are


familiar with it. MSS went for a method belonging to the first family of methods, in line with


recent recommendations (Link & Barker 2007). Interestingly, reversible jump MCMC is now


implemented in WinBUGS, and MSS could have used it to compare models. This raises the


issue of which method to use. Unfortunately, I’m not aware of any comparison or any review


that might give clear guidelines. Having made clear what each method does, the performances


of several candidate methods could be assessed by calculating frequencies of ranking the true


model as best in Monte Carlo simulations.


2.2. Identifiability and convergence issues.


We are often provided with, even in biological papers, technical details regarding convergence


of the MCMC algorithms, while it wouldn’t come to one’s mind to mention anything about


convergence in a classical analysis. This is probably because the procedures in the former


case have not yet been implemented in an automatic way, and further work is needed in that


direction. MSS have paid careful attention to the identifiability issue, and demonstrated that


their model was not parameter redundant. Note that formal methods were developed to assess


parameter redundancy ofprobabilistic models that could be used here too (review in Gimenez et


al. 2005). Nevertheless, a cause of poor MCMC convergence is weak identifiability (rather than


nonidentifiability) because it leads to large autocorrelations. Calculating the overlap between


prior and posterior parameter distributions can help in diagnosing weak identifiability (Garrett


& Zeger 2000; Gimenez, Morgan & Brooks 2008). Practical recommendations on checking


MCMC convergence are given by experienced statisticians in Kass, Carlin, Gelman & Neal


(1998) and comparisons of several available methods can be found in El Adlouni, Favre &


Bob´ ee (2006).


2.3. Goodness-of-fit testing.


Goodness–of–fit testing has received little attention in the Bayesian literature and only a few


methods are available, which are reviewed by MSS: Bayesian p-values, cross-validation, and


another approach developed by Box (1980). Here again, I’m not aware of any evaluation of the


frequentist properties (nominal level and power) of these methods. Besides, these procedures


tend to be ’omnibus’, in that the alternative hypothesis is simply stated as ’the model does not fit


the data at hand’, without any further indication as to where to go then. Once again, the Bayesian


approach may benefit from getting closer to a classical framework. Indeed, goodness-of-fit


testing procedures are well developed for single (Lebreton, Burnham, Clobert & Anderson


1992) and multistate (Pradel, Wintrebert & Gimenez 2003) mark-recapture models (review in


Pradel, Gimenez & Lebreton 2005). These methods rely on contingency tables that specify


well-identified alternative hypotheses (e.g., a trapping effect on recapture probabilities or a


memory effect on movement probabilities), which, in case of rejection, are invaluable when it


comes to building a model which fits the data better.


2.4. Even more complexity?


I have two further minor suggestions that might help to improve the MSS model. First, MSS


made the strong assumption that variation in survival could be fully explained by travel times


variation. However, if some extra variation exists, then bias may occur in parameter estimates


(Barry, Brooks, Catchpole & Morgan 2003). By using a state-space formulation of their model


(Gimenez et al. 2007), MSS could have incorporated individual random effects to cope with


(potential) unexplained sources of variability in survival (see Clark et al. 2005; Gimenez et al.


2006; Zheng, Ovaskainen, Saastamoinen & Hanski 2007; Royle 2008). Second, MSS wonder


how their model might be extended to a two–dimensional spatial setting. We have recently
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extended our nonparametric approach dealing with complex relationships between survival and


covariates that was mentioned by MSS (Gimenez et al. 2006; see also Gimenez et al. 2006 in


the Additional References) to cope with bivariate smoothing (Gimenez & Barbraud 2008). This


methodology has also potential applications in ecology in order to estimate spatial synchrony,


as well as in evolutionary biology in order to estimate fitness surfaces made of quantitative


phenotypic traits.


3. GENERAL CONSIDERATIONS


3.1. Bayes or not Bayes: is that the question?


As a biostatistician, I have long adopted an eclectic and pragmatic approach and have been using


either the Bayesian or the frequentist approach based on a few empirical criterions such as the


time it takes to get results, the ease of programming and the nature of the biological question (is


there any added value of going for a Bayesian analysis?). From a practitioner’s point of view,


it is worth repeating that, although it may appear obvious, both approaches are complementary,


provided that one is careful in using the terminology. As a nice illustration of this statement,


I would like to draw attention to the MCMC procedure recently proposed by Lele, Dennis &


Lutscher (2007) which has the appealing feature of producing maximum likelihood estimates.


It is fair to say that the Bayes approach is rarely used for what it is intrinsically, but rather as


an excuse for implementing the MCMC machinery to cope with complex multidimensional


likelihoods. Examples of incorporating prior information are still too few (see, however, Martin,


Kuhnert, Mengessen & Possingham 2005; McCarthy & Masters 2005), probably due to our


feebleness as referees, while every biologist would agree never to start a new data analysis


without prior knowledge of the system.


3.2. Transfer to biologists.


Obviously, in a pragmatic approach, the key question is ’why should I go foraBayesian analysis’.


The answer depends obviously on the analyst and the question, but several steps may be taken to


help in deciding whether jumping or not into new territory is worth the price.


• We should think more of teaching Bayesian theory in introductory statistics courses, al-

though some colleagues still hesitate to do so. I’ve taught both Bayesian and frequentist


theories this year in a statistical modelling course forMasters students in ecology and evo-

lutionary biology. The discussions were stimulating, focusing mainly on the incorporation


of prior information and on when to use one or the other method. I will repeat this next


year as I think that this lecture has not only added an arrow to their bow, but it has also


contributed to the development of their critical mind.


• Several excellent textbooks are now available which encourage self–teaching, for applied


statistician readers (Gilks, Richardson & Spiegelhalter 1996; Lee 1997; Carlin & Louis


2000; Congdon 2003; Gelman, Carlin, Stern & Rubin 2003; Congdon 2006) as well as


for biologist readers (Clark 2007; McCarthy 2007), and many others will surely follow.


Attending Bayesian workshops is another very efficient way of learning new material,


which has the non negligible advantage of keeping us stuck somewhere (often in exotic


places) with limited risk of being disturbed.


• To encourage codes and data sharing,wemilitate with other colleagues for the creation ofa


statistical ecology internet platform,with a format similar to Genbank (Benson et al. 2007)


in genetics, a database to which nucleotides sequences are submitted prior to publication.


This web site would gather material (in particular BUGS codes) that have been used in


publications, and would avert the too convenient statement ’the code is available upon


request from the authors’ which I have used myself too often.
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• Related to that, user-friendly and reliable pieces of software are needed. WinBUGS


(Spiegelhalter, Thomas & Best 2003) is very flexible (Gimenez et al. 2008), but could


gain in conviviality (e.g., by improving its debugging capabilities and implementing in


routine several simple analyses). The efforts to build a dialog between R and WinBUGS


initiated through the R package R2WinBUGS (Sturtz, Ligges & Gelman 2005) should


be continued. An alternative to WinBUGS is AD–Model Builder (Fournier 2001), which


seems to be much quicker, but is neither free nor open-source, as is WinBUGS.


Overall, teaching (and research) in ecological statistics largely benefits from collaboration


between statisticians and biologists.


4. CONCLUSIONS


Hierarchical analysis of data on marked animals (Clark et al. 2005; Pradel 2005; Gimenez et


al. 2007; Zheng, Ovaskainen, Saastamoinen & Hanski 2007; Royle 2008) is experiencing an


increasing number of applications in ecology, conservation and evolutionary biology, thanks to


the Bayesian framework in conjunction with MCMC methods for its implementation. Note that


even though this combination has many advantages, I do not mean to overlook other methods


that are valuable to fit models with latent structures, such as particle filtering (Buckland, New-

man, Thomas & Koesters 2004; Thomas, Buckland, Newman & Harwood 2005), Kalman filter-

ing (Besbeas, Freeman, Morgan & Catchpole 2002) and Newton-type algorithms (Pradel 2005).


Even better, we still need to explore other methods since, although the Bayesian framework is


more than three centuries old, we have to confess that its practical implementation using MCMC


simulations is not as mature as maximum likelihood analyses using standard optimization meth-

ods. As Muthukumarana, Schwarz and Swartz acknowledge, potential issues may arise at various


steps of the analysis, such as model identifiability, convergence assessment, model selection and


goodness-of-fit testing. We see, however, good signs of a trend towards clear guidelines on how


to carry out a Bayesian analysis using MCMC algorithms, the paper by MSS being an important


contribution in that direction. In that spirit, and besides the original development of new models


for fish monitoring, I consider the paper by MSS as a successful attempt to produce a Bayesian


analysis template for future data analyses.
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Swartz was born a Bayesian, Muthukumarana is a novice, and Schwarz is a heretic who


converted from likelihood methods. We share many ofGimenez’s frustrations with the Bayesian


approach in capture-recapture. Perhaps some of us have too many grey hairs and find it difficult


to learn new tricks, but the transition from likelihood methods to Bayesian methods has not been


without much soul-searching and questioning.


1 .MODEL SELECTION


Some of us like the likelihood AIC paradigm – all models are wrong, so if several models seem


to fit the data equally well, why not combine inference over these models rather than searching


for the best single model. A possibility is to do the same using Bayesian methods although this


requires additional complexity and computation.


Like Gimenez, given that Bayes factors can rarely be computed in complex models, we find


the Bayesian alphabet soup (AIC,DIC, BIC, etc) somewhat confusing. We are also uneasy about


some uses ofRJMCMC methods where there are literally millions ofpotential models (e.g. King


et al. 2006). The first rule in using likelihood-AIC methods is NOT to data dredge, but to start


with a carefully selected set of candidate models. This advice seems to be discarded in these


large scale reversible jump MCMC applications where the model space can’t even be listed in


advance because it is so large. We wonder about the reliability of inference when millions of


MCMC iterations cannot possibly cover the entire model space.


In cases like this, perhaps a better model selection summary is available? Rather than pro-

ducing the probability of individual models, perhaps obtaining the probability of related groups


ofmodels would be more useful? For example, in King, Brooks, Morgan & Coulson (2006), the


number and size of age classes was explored. The probability of a model for a given age class


structure or all models that are subsets of this age class structure seems appropriate.


2.GOODNESS-OF-FIT


One approach to Bayesian goodness-of-fit involves model comparison between the currentmodel


and a very general but well-fitting model. This approach suggests the use of model selection


methods rather than trying to mimic likelihood methods via Bayesian p-values, etc. This could be


a viable strategy for goodness-of-fit against specified alternatives, but is it possible to determine


an adequate and “fully-saturated model” in the Bayesian context?


We are also somewhat at a loss on how to deal with goodness-of-fit for these very complex


models. In likelihood methods, the basic goodness-of-fit tests in mark-recapture methods are


comparisons between the observed and expected counts of various histories. However, in com-

plex models such as in this paper, every history (a combination of where and when captured) is


likely unique, and this approach breaks down. There have been many paper in the literature deal-

ing with sparse multinomial models (e.g., Simonoff, 1985; Eubank, 1997) which assume local


smoothness in the cells which would seem like a logical way to proceed, but we are unaware of


any such methods being used for capture-recapture.


3.INFLUENCE OF PRIORS


One of the powerful advantages of Bayesian methodology is the ability to include useful prior


information. Yet, lip service is often paid to this idea; indeed, “uninformative” priors are often


used where the data are supposed to speak for themselves. Some ofus feel that there are actually


two stages of inference that ought to be practiced. In the first stage, we find it appealing to


see what the data from the experiment, and the experiment alone are saying. In this case, non-

informative priors would be utilized. In the second stage, a Bayesian analysis using subjective


prior information would be carried out. The two-stage procedure permits a comparison of the


relative importance ofdata versus prior opinion. In practice, we find that the second step is rarely


done. Often, it is difficult to summarize the state ofknowledge about a parameter and researchers


want to avoid comments from referees that the prior ignored paper x or paper y.
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Another reason for the choice of noninformative priors is the (naive) belief that the results


are not influenced by the prior. Schwarz must admit that he has made this mistake in thinking.


He finds it unintuitive that a flat beta prior on p in a binomial experiment has the “effect” of


adding “1” to the sample size when the posterior is examined. In his naive thinking, Schwarz


would like (uninformative) priors to “subtract” 1 from the sample sizes! And how can priors be


uninformative when there are sometimes several uninformative priors to choose from in a given


problem?


Gimenez’s suggestion of looking at the overlap between the prior and posterior distribu-

tions (see the additional references) appears to be one way to see how much new information


is contributed by the data over the prior. This could be an “automated” approach to looking


at the relative contribution of information from priors and data, but another (admittedly) naive


approach would be to simply look at the difference between the maximum likelihood estimator


(MLE) and the mean of the posterior. Presumably if the MLE cannot be explicitly computed, a


stochastic MLE could be found, as outlined in Lele, Dennis & Lutscher (2007).


4.TECHNOLOGY TRANSFER


Gimenez’s suggestion ofan MCMC bank for code is extremely useful. The ‘wiki’ paradigmmay


be more useful where code can be modified and improved. An impediment, unfortunately, is the


common problem that the reward system in most academic institutions is completely orthogonal


to collaborative approach of this sort.


We also agree with Gimenez’s comments about the difficulty in using WINBUGS. Except


for simple problems, we find that using this package is not for the faint of heart. We hope that


our WINBUGS can serve as a foundation for future applications in capture recapture.


We cannot emphasize too strongly the importance of exercising code using simulated data


(with enormous sample sizes) where the answers are known in advance and MCMC simulation


error will be negligible. These simulation exercises should try a variety of parameter values and


scenarios. Here we grey-haired members of the community actually have an advantage over


newcomers as this was common practice when debugging FORTRAN or other codes, but is


rarely practiced now.


5.FINAL REMARKS


As Gimenez notes, the Bayesian paradigm together with MCMC methods, allows more complex


models to be fit thanwhen using standard likelihood theory. But, at the same time, the fundamen-

tal problems ofmodel selection,model averaging andgoodness-of-fit are seldomstraightforward.


We found that our team worked well on this paper. Often new converts are more zealous than


members born to a faith, but our varied team kept each other in check. The novice supplied the


energy and drive; the heretic challenged the methods at every step and the cardinal supplied the


background and wisdom to ensure that the project did not stray from the proper path.
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