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ABSTRACT

RIVER AND ESTUARINE SURVIVAL AND MIGRATION OF
YEARLING SACRAMENTO RIVER CHINOOK SALMON
(ONCORHYNCHUS TSHAWYTSCHA) SMOLTS AND THE

INFLUENCE OF ENVIRONMENT

by

CYRIL J. MICHEL

Identifying where sources of enhanced mortality of outmigrating Chinook


salmon (smolts) occur, and the movement patterns associated with this life stage, are


critical steps in the preservation and conservation of imperiled salmonids in


California’s Sacramento River system. To that end, 200-300 late-fall run Chinook


salmon yearling smolts were acoustically tagged per year and tracked during their


outmigration in California’s Sacramento River during 2007-2009. Total outmigration


survival to the ocean environment varied from 3.1% (± 1.5 S.E.) to 5.5% (±1.2 S.E.),


depending on the release year, with an all year total outmigration survival of 3.9% (±


0.6 S.E.), substantially lower than published survival of other West Coast yearling


Chinook salmon smolt emigrations. The migration rates of the smolts that


successfully reached the ocean varied significantly based on release location, from an


average of 14.32 km·day-1 (± 1.32 S.E.) to 23.53 km·day-1 (± 3.64 S.E.). The high


spatial resolution of survival estimates of Chinook salmon (Oncorhynchus


tshawytscha) revealed that smolts exhibited relatively low survival (92-97%


survival·10km-1) in the upper reaches of the Sacramento River, as well as in the




Sacramento River Delta and San Francisco Estuary (67-94% survival·10km-1). No


significant inter-annual variation in survival, total river migration rates, or smaller


scale movement rates were found, potentially due to similar hydrographic conditions


among the three years. Survival did fluctuate significantly depending on month of


release and river reach. Several natural and anthropogenic factors that are known to


affect smolt survival rates were assessed; variables associated with river


channelization, turbidity and sinuosity were all found to have positive relationships


with survival within the river, suggesting increases in these variables may increase


survival (likely by means of reducing predation). Smolts exhibited strong nocturnal


movements while in the less turbid and channelized upper regions of the river which


dissipated to temporally uniform movements in the more turbid and channelized


lower regions of the river, suggesting that eased predatory action may have caused


smolts to discontinue the nocturnal strategy. Survival data suggests a refocusing of


fisheries and resource managers’ efforts, specifically with regards to hatchery release


strategies and the current concentration of mitigation efforts in the delta.
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INTRODUCTION

 In California’s Central Valley (comprised of the Sacramento and San Joaquin


Rivers, as well as their tributaries), freshwater salmon ecology has become


inextricably associated with human interests. In a watershed where 47% of historical


salmon spawning, migration and rearing habitats are inaccessible due to dams


(Yoshiyama et al. 2001), an estimated 40% of the historical, pre-colonization river


discharge is lost to water exports (Nichols et al. 1986). Finally, where approximately


90% of historical Central Valley wetlands, which are important for salmonid rearing,


have disappeared to allow for agriculture and flood control (Frayer et al. 1989), one


must think of this watershed as, at best, an altered ecosystem. As a result of these


modifications and others, the four distinct Central Valley Chinook salmon


(Oncorhynchus tshawytscha) populations are either endangered, threatened, or a


“species of concern” according to the U.S. Endangered Species Act (ESA).


Moreover, the commercial importance of water resources and a $255 million salmon


fishing industry (Office of the Governor of California 2008) makes habitat and


population recovery to pre-colonization levels impossible. It is therefore imperative


that we understand the influence of the environment on Chinook salmon survival and


behavior, both to assess the impact of current habitat modifications, but also to


provide recommendations into how to improve management of this watershed with


respects to one of its most valuable resources.


The outmigration of juvenile Chinook salmon (smolts) is among the most


vulnerable life stages during which habitat modification can have strong influences.




 2


During this relatively short life stage, a smolt will sometimes travel hundreds of


kilometers and transit several different habitats with varying degrees of anthropogenic


modification. Human activities can directly influence smolt survival, but also


indirectly through the intermediary of changed environmental conditions. Thus, the


focus of my first chapter is on survival patterns of a population of outmigrating


Central Valley Chinook salmon smolts, on the environmental factors that correlate


with them, and finally, an assessment of the influence of watershed modification.


Salmonids employ numerous life-history strategies to maximize fitness and


survival. Specifically, movement patterns during migration contribute to


survivability, and different migration strategies can vary in their effectiveness


(Stearns 1976). For example, Chinook salmon have two distinct early life history


strategies to maximize survival and growth: “ocean-type” juveniles that leave the


river and travel to the ocean weeks after hatching and “stream-type” juveniles that


feed in the river for up to one year and outmigrate to the ocean at a much larger size


(Gilbert 1912). Depending on the river and ocean conditions for each year, one of


these life history strategies may result in better survival than the other. In this


investigation, I have therefore quantified movement during the outmigration of


“stream-type” juveniles, highlighted potential movement strategies and associations


with the environment, and discussed the sources of mortality that may have shaped


them in the second chapter of this thesis.


The fisheries and resource management applications of the information


collected in this study are invaluable in many regards. This study has provided high
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spatial and temporal resolution survival estimates, illuminating regions of particularly


high and low survival. These estimates, coupled with environmental data, will allow


resource managers to concentrate mitigation efforts on specific mortality hot-spots


while benefiting from evidence for potential causality for both low and high survival.


This study also provides managers with a detailed description of the outmigration of


the smolts in question, and the correlations with environmental variables, allowing


them to better predict the consequences of anthropogenic activities that occur along


the migratory corridor, or predict migration dynamics of future cohorts facing


environmental changes. Finally, and perhaps most importantly, this study has


discerned survival and movement dynamics that may be shared by the ESA. listed


Chinook salmon runs in the Central Valley, adding to a knowledge base that will be


fundamental to conservation actions.
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Nichols, F.H., Cloern, J.E., Luoma, S.N., and Peterson, D.H. 1986. The Modification
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Office of the Governor of the State of California 2008. Gov. Schwarzenegger Takes


Action to Address Impacts of Vote to Close Commercial and Recreational




 4


Salmon Fisheries, Sacramento, CA. Available from
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Edited by R.L. Brown. California Department of Fish and Game, Sacramento,


California. pp. 71-176
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Chapter 1

River and estuarine survival of yearling Sacramento River Chinook
salmon (Oncorhynchus tshawytscha) smolts and the influence of

environment

INTRODUCTION

Chinook salmon (Oncorhynchus tshawytscha) are a cultural and economic


resource to the western United States and Canada, including the state of California.


Of the California salmon rivers, the Sacramento River supports the largest, most


diverse, and until recently, healthiest salmon stocks. However, since 2007, the largest


of the Sacramento River populations, the fall run Chinook salmon, has crashed, and


adult returns to the basin have been as low as 25% of the long-term 30-year average


(in 2009; Azat 2010). Emergency action has been taken by the Pacific Fisheries


Management Council, including a moratorium on commercial and recreational


fisheries for coastal and inland waters of the entire state for the 2008-2009 seasons,


causing an estimated loss of $255 million and 2,263 jobs (Office of the Governor of


California, 2008). This precipitous decline is thought to have been driven by poor


ocean conditions (Lindley et al. 2009), but it is clear that it is a combination of many


stressors that have brought Sacramento River salmon to such a delicate state


(Yoshiyama et al. 1998).


One of the most vulnerable stages in a Chinook salmon’s life is the


downstream migration of juveniles heading to the ocean from their riverine origins
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(Healey 1991). During this life stage, the juvenile salmon undergoes many


physiological and behavioral changes (known as smoltification) to prepare for the


ocean phase of their life cycle. For the Sacramento River’s Chinook salmon


populations, this freshwater journey may be as long as 600 kilometers, transiting


many different habitats. Additionally, anthropogenic stressors such as water


diversions, dams and introduced predators are present throughout the watershed.


Environmental factors can influence smolt survival directly or indirectly by


influencing the distribution and foraging of the smolt predators. For example, Smith


et al. (2002) found that survival decreased as river flow decreased for subyearling fall


run Chinook salmon in the Snake River; Gregory and Levings found that increased


turbidity resulted in increased survival for juvenile Chinook salmon in the Fraser


River (1998), and Baker et al. (1995) found that temperature explained a substantial


portion of the variation in survival rates for subyearling fall run Chinook salmon in


the Sacramento – San Joaquin River Delta, especially as temperatures neared lethally


high levels.


Understanding the magnitude and potential variation in smolt mortality is a


logistically and quantitatively difficult problem. Cormack (1964), Jolly (1965), and


Seber (1965) developed methods for determining temporally explicit survival


estimates in rivers via mark-multiple recapture models. Burnham (1987) then


developed a spatially explicit approach adapted for estimating survival of migrating


fish in rivers, which, for example, was used for survival estimates on a river-reach


scale for Columbia River salmon (Muir et al. 2001, Skalski et al. 2001). These
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quantitative mark-recapture techniques can be expanded to assess what environmental


conditions correlate with variations in survival.


In this study, I quantify the spatial and temporal patterns of Chinook salmon


survival in the Sacramento River system. I capitalized on one of the largest networks


of acoustic monitors in the world developed by the California Fish Tracking


Consortium (http://californiafishtracking.ucdavis.edu/), and a collaboration between


the National Oceanic and Atmospheric Administration (NOAA) and the University of


California, Davis (UCD), to utilize these aforementioned techniques on the late-fall


run Chinook salmon population in California’s Central Valley. Previous


investigations of Chinook salmon in the Sacramento River only allowed for low-

resolution estimates of survival (Snider 2000 a, b). Additionally, most work had


focused on only the Sacramento-San Joaquin River Delta (Baker and Morhardt 2001,


Brandes and McLain 2001), a small portion of the smolt migration corridor.


I will address the two following hypotheses:


(1) Total and reach-specific outmigrating late-fall run Chinook salmon


smolt survival rates vary spatially and temporally in the Sacramento River,

Sacramento-San Joaquin Delta and San Francisco Estuary.


(2) Environmental variables that vary in space and time can explain a

substantial portion of variation in reach-specific survival rates.

This represents the first high-resolution analysis of the magnitude and spatial-

temporal variation in survival of outmigrating Chinook salmon smolts in the


Sacramento River and San Francisco Estuary and the potential natural and


http://californiafishtracking.ucdavis.edu/),
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anthropogenic drivers of mortality. This represents a leap forward in our


understanding of the environmental factors that may influence survival rates of


outmigrating Chinook salmon smolts. This knowledge is critical to efforts to mitigate


the sources of mortality or predict survival rates of future cohorts facing


environmental changes. Finally, assessing what environmental conditions influence


variation in late-fall run Chinook salmon survival will help give us insight into factors


affecting the survival dynamics of other valued salmon runs in California such as the


winter and spring run, listed under the United States Endangered Species Act as


endangered and threatened, respectively (Moyle et al. 1995).


METHODS

Study area

The Sacramento River is the longest and largest (measured by flow discharge)


river that is fully contained within the state of California, and is the third largest river


that flows into the Pacific Ocean in the contiguous United States (Fig. 1). The


headwaters are located just south of Mount Shasta in the lower Cascade Range and


the river enters the ocean through San Francisco Estuary at the Golden Gate. The total


catchment area spans approximately 70,000 km-2. The Sacramento River and its


tributaries have been heavily dammed, and it is estimated that approximately 47% of


the historic area that was used for spawning, migration and/or rearing of Chinook


salmon is no longer accessible (Yoshiyama et al. 2001). The Sacramento River


watershed includes diverse habitats, from a pristine run-riffle river, to a heavily


channelized and impacted waterway further south, to an expansive tidally-influenced
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freshwater delta at its confluence with the San Joaquin River, and finally to the San


Francisco Estuary, the largest and most modified estuary on the west coast of the


United States (Nichols et al. 1986). The annual mean daily discharge for the


Sacramento River from 1956 to 2008 was 668 m3s-1 (Interagency Ecological Program,


2004). However, this water does not continue downstream unimpounded, it is


estimated that current water discharge of the Sacramento and San Joaquin Rivers


combined amounts to approximately 40% of the historical, pre-colonization discharge


(Nichols et al. 1986). The damming and water diversions of the Sacramento River


and its tributaries have also homogenized river flows throughout the year, notably


reducing the historical winter high flows and flooding (Buer et al. 1989).


The study area included approximately 92% of the current outmigration


corridor of late-fall run Chinook salmon, from release to ocean entry. Specifically, the


study area’s furthest upstream release site at Jelly’s Ferry (518 km upstream from the


Golden Gate Bridge) is only 47 km downstream from Keswick Dam, the first


impassable barrier to anadromy.


Central Valley late-fall run Chinook salmon

The California Central Valley (includes the Sacramento and San Joaquin


Rivers, as well as their tributaries) has four distinct Chinook salmon populations


(runs) that all migrate at different times of the year. Additionally, these populations


demonstrate one of two early life history strategies: “ocean-type” and “stream-type”


(Gilbert 1912). Ocean-type Chinook salmon are born in the lower reaches of large


rivers and spend very little time (days to weeks) in the river before migrating to the
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ocean. Stream-type juveniles are born in the headwaters of large rivers and spend up


to a year in the river (“yearling”), migrating to the ocean at a relatively large size.


Among the different runs and early life history strategies, it becomes clear that


different populations have found different migration strategies to maximize survival


(Taylor 1990).


The late-fall run is one of the four runs found in the Sacramento River


drainage, and is the only to exhibit a predominately stream-type life history (Moyle


2002). It is considered to be a “species of concern” by the Endangered Species Act as


of April 15, 2004. Juveniles exhibit a river residency of 7 to 13 months, after which


smolts will enter the ocean at a size of approximately 160 mm (Fisher 1994).


Potentially due to water diversions and increased predation in bank-altered areas,


outmigrating late-fall run juveniles accrue substantial mortality (Moyle et al. 1995).


The historical distribution of the late-fall run Chinook salmon is hard to


estimate, due to the paucity of historical data. Late-fall run Chinook salmon were not


distinguished from fall run fish until 1966, when counts were initiated after the


construction of the Red Bluff Diversion Dam (RBDD) in the mid 1960s (Yoshiyama


et al. 1998). However, we know that ideal late-fall run Chinook salmon spawning


habitat consists of year-round cold water allowing the rearing of yearlings, and that


their current spawning range is from Red Bluff (480 river km (rkm) upstream from


the Golden Gate Bridge) to the first barrier to anadromy, Keswick Dam (rkm 565)


(Fisher 1994, Moyle et al. 1995, Yoshiyama et al. 2001). We assume that this run


historically used the cold waters upstream of Keswick Dam, specifically the Upper
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Sacramento, McCloud and Pit Rivers for spawning (Yoshiyama et al. 1998). Since


these rivers are no longer accessible, the large majority of late-fall run Chinook


salmon spawning grounds disappeared with the construction of Keswick and Shasta


Dams.


Acoustic Telemetry

Acoustic tagging technology was used to acquire high-resolution movement


and survival estimates. I used Vemco V7-2L acoustic tags (1.58g ± 0.03 S.D.; Amirix


Systems, Inc., Halifax, Nova Scotia, Canada) and Vemco VR2/VR2W submergible


monitors to track tagged fish. The monitor array spanned 550 km of the Sacramento


River watershed from Keswick Dam to the ocean (Golden Gate). This array of


approximately 300 monitors was maintained by the California Fish Tracking


Consortium, and positioned to maximize detection probability at key sites along the


outmigration corridor.


The acoustic monitors automatically process all detection data and drop false


detections or incomplete codes from the detection file. All detection files were


additionally subject to standardized quality control procedures to minimize the


number of false detections. For example, detections that occurred before the release


date-time of each tag, or detections that did not share a tag identification number


(tagID) with any of the released fish, were excluded from analysis.


Tagging and Releases


For three consecutive winters, from January 2007 to January 2009 (henceforth


referred to as 2007, 2008 and 2009 seasons, based on the year during which January
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tagging occurred), 200 to 300 late-fall run Chinook salmon smolts were tagged and


released into the Sacramento River watershed. The size of tagged fish (Table 1) was


consistent with observed size frequency for this run, albeit larger than other life-

history type Chinook salmon smolts (Fisher 1994).


Hatchery-origin yearling late-fall run Chinook salmon (Oncorhynchus

tshawytscha) smolts, obtained from the United States Fish and Wildlife Service’s


(USFWS) Coleman National Fish Hatchery (Anderson, CA), were used in this study.


Approximately 85-90% of the hatchery smolts are the progeny of hatchery-origin


adults trapped in Battle Creek (tributary to the Sacramento River); parents of the


remaining hatchery smolts’ are natural-origin adults trapped on the mainstem


Sacramento River just below Keswick Dam (K. Niemela, USFWS, Red Bluff, CA


96080, unpubl. report).


Acoustic tags were surgically implanted into the peritoneal cavity of


anesthetized fish as described by two studies (Adams et al. 1998a, Martinelli et al.


1998). Tag weight did not exceed 5% of the total body weight to minimize potential


affects on survival, growth, and behavior. This cutoff point was conservative,


considering much of the literature shows tag-to-body ratios can be up to 6% and not


affect growth (Moore et al. 1990, Adams et al. 1998a, Martinelli et al. 1998), and up


to 8 % and not affect swimming performance (Brown et al. 1999, Anglea et al. 2004,


Lacroix et al. 2004).


Tagged fish were kept in captivity for a minimum of 24 hr after surgery to


ensure proper recovery.  In the 2007 season, a portion of the tagged fish was released
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each weekday for three consecutive weeks in January. In the two following seasons,


half the smolts were released in December and half in January, both on a single day.


All releases occurred at dusk to minimize predation as the smolts became habituated


to the riverine environment.


In the first year (2007), all 200 fish were released at the Coleman National


Fish Hatchery into Battle Creek, a tributary to the Sacramento River. In the latter two


years, approximately 300 fish were tagged each year and simultaneously released


from three release sites in the upper 150 rkm of the mainstem Sacramento River,


allowing the lower release groups to reach the lower river and estuary in larger


numbers. Fish were transported at low densities (~ 10 g•l-1) via coolers with aerators


to the release sites. In years of multiple release sites, transport times were extended


for closer sites to keep potential transport stress equal among all release groups.


Data Analysis

Juvenile Chinook salmon express obligate anadromy, meaning that they will


travel toward the ocean once the emigration has begun, with scarce exceptions


(Healey 1991). Therefore, in a linear system such as the Sacramento River, if a fish is


detected at one monitor site, but is never detected thereafter, we assume that the fish


has died somewhere in the reach between the monitor where it was last detected and


the next downstream monitor location.


Calculating mortality using fish absence as a proxy works if we assume


detection efficiency is perfect. Unfortunately, detection efficiency is not 100% given


current tagging technology. Therefore, to accurately calculate the mortality rates of
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the emigrating Chinook salmon while accounting for detection probability, I used the


Cormack-Jolly-Seber (CJS) model for live recaptures within Program MARK


(created by Gary White, Colorado State University(White and Burnham 1999). The


CJS model was originally conceived to calculate survival of tagged animals over


time, by re-sampling (recapturing individuals) an area and calculating survival and


recapture probabilities using maximum likelihood models. For species that express an


obligate migratory behavior, a spatial form of the CJS model can be used, in which


recaptures (i.e., detected acoustically more than once) are structured spatially along a


migratory corridor (Burnham 1987).  The model determines if fish not seen at certain


monitors were ever seen at any monitor downstream of that specific monitor, thus


enabling calculation of maximum-likelihood estimates for detection efficiency of all


monitor locations (p), all survival estimates (Φ), and 95% confidence intervals for


both (Lebreton et al. 1992).


Detection efficiencies are calculated by assessing the number of tags missed


by a monitor location. This can be done if a missed tag is seen at a downstream


location and therefore assumed to have passed the upstream location. In addition, as


sample size decreases further downstream, detection efficiencies have increasingly


large errors until the final monitor location, where survival and detection efficiency at


that station are not identifiable. Because accurate estimates of survival at ocean entry


were important, parallel monitor lines were installed at the Golden Gate about 1 km


apart to calculate both detection efficiency and survival at the inner Golden Gate line.


Additionally, in the latter two tagging seasons, I benefitted from the installation of a
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monitor line at Point Reyes, seaward from the Golden Gate approximately 60 km to


the north. This acoustic monitor curtain allowed an estimate of detection efficiency


for the outer Golden Gate line, thereby further reducing error in the estimation of


survival and detection efficiency to the inner Golden Gate line.


After the three-year study was completed, monitor locations were assessed for


their detection probability and functional reliability over the three-year period, and


their location within the watershed. Those that were consistently efficient monitor


locations were chosen to delimit the river reaches that were used in spatially


comparing mortality. A total of 19 monitor locations were chosen, spanning from just


below the most upstream release site to the Golden Gate (Fig. 1; Table 2). Between


them, I delineated 17 reaches in which mortality can be accurately estimated (the


detection efficiency and survival of the 18th and last reach cannot be distinguished).


The acoustic monitors automatically process all detection data and drop false


detections or incomplete codes. Unfortunately, the downloadable detection files are


not completely accurate, and occasionally, in areas with high densities of pinging tags


or other acoustic noises, false detections are deemed correct by the monitor and saved


in the detection files. Detection data was thus stored in a relational database


(Microsoft SQL Server 2005, Microsoft Corporation) and analyzed for quality


control. Detections that occurred before release date-time of each tag were then


deleted. Next, single detections at locations that are not between valid upstream and


downstream detections (a valid detection is defined as less than 10 days OR 50 rkm to


prior or next detection) were deleted. Finally, if multiple consecutive detections of a
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tag at one location are greater than 216 minutes apart (10% less than the minimum


observed time between consecutive known false detections of the same tag) the


detections were considered for removal. These different conditions removed false


detections to the best of my ability.


Hypothesis 1

Overall survival was first assessed from the release site to the Golden Gate for


each release group. Using the 19 monitor locations, survival for 17 reaches was


calculated, using the survival and detection probability linear model (in logit space)


allowing for each reach to have a parameter (“full model”). This model, and all other


models, allowed for full parameters for the estimation of detection efficiencies (i.e.,


allowing detection efficiencies to vary per monitor location). I calculated reach-

specific survival for each release group separately. By multiplying these survival rates


together, the cumulative survival per release group is estimated. Multiplying the


cumulative survival rate by the release size produces an estimate of total fish per


release group that reached the ocean. Standard error for the cumulative survival


estimates were calculated using the delta method.


The influences of study design factors on survival rates were then assessed


with Program MARK. To do this, a separate survival model was created for each


factor. The influence of these factors was assessed by allowing each group (e.g., 3


groups for the release year model: 2007, 2008 and 2009) within each model to have


its own set of survival parameters. Each survival model was added to some form of a


base model (often representing a null hypothesis) one by one and then compared to
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the base model using model selection. The model selection criterion used was


Akaike’s Information Criterion (AIC), an excellent tool for model comparing and


selection because it balances precision and accuracy by penalizing a model for the


total amount of parameters it has. Therefore, we are effectively comparing model


parsimony and not simply model goodness-of-fit. As suggested by Burnham and


Anderson (2002), AIC values were corrected for small sample sizes (AICc), and


corrected for over-dispersion (QAICc). If a test model improved the parsimony


(lower QAICc) in relation to the base model by a difference of more than seven


(Burnham and Anderson 2002), the test model was deemed substantially more


parsimonious, and therefore supported over the base model.


The effects of reach (n=17), release year (n=3), release month (n=2), and


release site (n=3) were tested. This was done by comparing the parsimony of each


model to the parsimony of a “null model”. The null model only allowed one


parameter for survival (representing the null hypothesis: constant survival through


space and time). To allow for these factors to express reach-specific variability in


survival, each group (e.g., each year with the above example) has its own reach-

specific survival estimates within the confines of one model. The most supported


models (based on AIC scores) were then interpreted to determine if the tested factor


could have a substantial influence on survival by comparing the models to their


counterparts that did not include the factor in question.


Finally, the influence of individual covariates (fork length (mm) and weight


(g)) on the parsimony of the survival model was assessed. This can be done by adding
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a parameter to the linear regression model for survival that represents the covariate.


Program MARK then utilizes the parameter to include the individual contribution into


the likelihood estimation of survival. The model selected a priori to add these


covariates to is the reach-specific survival model. This model can then be compared


to the simple reach-specific survival model without any individual covariates to


determine whether parsimony increases.


Considering this study utilized hatchery-origin smolts for these analyses, the


ability to suggest these smolts are adequate surrogates for wild (or natural-origin)


smolts in terms of determining survival dynamics would be very useful. A pilot


tagging project on natural-origin late-fall run Chinook salmon smolts was conducted


in 2009 concurrent with hatchery-origin tagging. A total of 18 wild smolts were


captured, acoustically tagged, and released in the mainstem Sacramento at Red Bluff


(rkm 478) and in tributary Mill Creek (confluence with Sacramento River at rkm


460). Using the same methods as with hatchery-origin smolts, estimates of reach-

specific survival were calculated for the natural-origin smolts. A survival model


incorporating detection information from both wild-origin smolts and hatchery-origin


smolts released in the 2009 season was created. This model allowed both smolt


groups to have their own set of survival parameters. This model was compared to a


survival model incorporating the same detection data but constructed as a reach-

specific survival model, with both groups sharing the same survival parameters.


Essentially, the comparison of the two models determined if natural-origin and


hatchery-origin had similar or different survival estimates, based on which model was
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more supported. This permitted an approximate suggestion of how the hatchery-

origin smolt survival estimates compare to a limited sample of the wild population.


Hypothesis 2

Data for environmental variables were compiled for the river reaches, from


the release points to the upper limit of tidal influence on the river (rkm 189). They


were grouped into two types: spatial-temporal natural variables and spatial natural


and anthropogenic variables. All variables were chosen a priori based on salmon


survival literature and data availability for the watershed. To formalize the approach


on investigating the influence of the environment on survival, a conceptual model


was constructed (Fig. 2). Riparian habitat and river morphology are spatial variables


which influence water temperature, turbidity, and water dynamics. These variables


likely govern the behavior of the smolts and their predators, and thus the smolts’


susceptibility to predation. Due to the inability to directly measure predation,


estimated mortality (using the above methods) was considered as a proxy for


predation.


The spatial-temporal variables included water temperature (ºC) (Kjelson and


Brandes 1989, Baker et al. 1995, Newman and Rice 2002, Smith et al. 2002, Connor


et al. 2003), water flow (m3·s-1), channel water velocity (m·s-1) (Kjelson and Brandes


1989, Smith et al. 2002, Connor et al. 2003), water turbidity (Nephelometric


Turbidity Units (ntu); Gregory 1993, Gregory and Levings 1998), maximum river


depth (m), and the ratio of river width (m) to maximum river depth (m, WDR). The


WDR will increase as the river becomes shallower and wider. Spatial-temporal
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variables such as temperature, turbidity and flow were recorded directly from gauge


stations on the river (Table 3). Measurements such as channel water velocity, depth


and river width were simulated using actual flow recordings, high resolution


bathymetric cross-sections and gradient information in the riverine hydraulics


modeling software program HEC-RAS (US Army Corps of Hydraulic Engineers).


The spatial variables included water diversions (diversions·km-1) (Kjelson and


Brandes 1989, Perry et al. 2010), riparian habitat type (% of riparian zone covered by


either agricultural, natural, or urban land) (Gregory et al. 1991, Pusey and Arthington


2003), riprap (% of total shore reinforced with riprap) (Schmetterling et al. 2001),


levees (% of total shore reinforced with leveed walls) and sinuosity (actual river


length divided by the length of a direct line between the nodes delimiting each reach).


All spatial variables were calculated using the geographic information system


software program ArcGIS (ESRI, 1999). Spatial and spatial-temporal variables were


associated to tag detections in a relational database.


Once data for the environmental variables were collected, they were averaged


per appropriate unit. The spatial variables, not changing through time, were simply


averaged per reach. The spatial-temporal variables were averaged per year, month of


release, release site, and reach. Having the spatial-temporal variables averaged per


smallest group denomination allowed for the maximum amount of spatial-temporal


resolution associated to the mortality data.


Within Program Mark, riverine survival was modeled as a logit function of


two linear predictors (Eqn 1), while detection efficiency was allowed to vary fully per
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reach (in the style of the full model). The survival model included an intercept (β0), a


parameter for the reach length (km), and a parameter for an environmental variable.


This is a novel approach to relating environmental data to smolt survival, although the


technique has been employed instead with detection efficiencies (Melnychuk 2009).


The environmental parameter will also have an associated beta coefficient (β),


allowing determination of the direction and slope of the relationship. Additionally, by


standardizing the environmental variables (subtracting the mean value from each raw


data point, then dividing by the standard deviation, essentially giving all standardized


variable datasets a mean of zero and a standard deviation of one), standardized beta


coefficients can be calculated, allowing for comparison of the strengths of beta


coefficients for different models. For a change in one standard deviation unit of the


environmental variable, survival will change by the amount specified by that model’s


standardized beta coefficient.


(1)   Logit (Φ) = β0 + β1[Reach Length] + β2[Env. Variable]


 All environmental models were compared to a base model to test for a


significant improvement in parsimony. The purpose of this base model is to include


all sources of mortality that should not be attributed to the environment. The base


model specified a priori included both reach length and initial mortality after release


(Olla et al. 1994, Olla et al. 1995). I adopted reach length, needing to control for the


large variation in lengths, but did not incorporate initial release mortality. This was


determined after I compared survival models allowing for different survival estimates


in the first one and two reaches after release in comparison to all other reaches to the




 22


“full model” (reach-specific survival model), and the initial release mortality models


were not significantly more parsimonious. In essence, this compared survival through


the same reaches of smolts released at that point and smolts released further upstream


and found no significant evidence of different survival rates.  Therefore, the final base


model specified constant survival as a function of reach length.


Environmental models were also compared to the full model. The full model


is widely used as the CJS model for calculating survival between, and detection


probabilities at, each recapture event, and is typically the most parsimonious model.


Comparing environmental models to the fully reach-varying model provided a rough


estimate of the distance from potentially maximum parsimony.


Spatial and spatial-temporal environmental models cannot be compared to


each other for causative and statistical reasons. In terms of causation, the spatial


variables often govern the spatial-temporal variables (i.e., % leveed shoreline


influences width and depth of river) (Fig. 2). Statistically, strictly spatial variables


should not be added to the spatial-temporal varying base model due to the temporal


grouping parameters (i.e., year, time) which would unnecessarily penalize the model


for the superfluous parameters. Therefore, the different spatial and spatial-temporal


environmental models were analyzed separately, and can only be compared to like


models.


Once the environmental variables that had the strongest associations with


survival estimates were determined, two sample t-tests were used to determine if
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variations existed between treatments that also exhibited significant variations in


survival.


RESULTS

Hypothesis 1

Total survival through the entire studied migration corridor (rkm 518 to 2) per


year varied from 3.1 to 6.1% (Table 4), with an all year total outmigration survival of


3.9% (± 0.6 S.E.). Release group-specific survival through the entire migration


corridor averaged between 3 and 13%. In both 2008 and 2009, when three release


sites were used, a consistent pattern emerged, such that the furthest upstream release


group exhibited the lowest survival, the furthest downstream release group exhibited


relatively moderate survival, and finally the middle release group had the best


survival of the three.


Fish weight and fork length varied significantly among years (P<0.001), and


pairwise hypothesis testing using Bonferroni and Tukey’s HSD tests both indicate


that fish sizes were statistically different between all years.


Survival on a reach-by-reach basis was quite variable. Through the three years


of the study, the upper river reaches (reaches 1 through 8; rkm 518 to 325) had lower


survival rates.  The lower Sacramento River had relatively higher survival (reaches 9-

12; rkm 325-169), whereas the delta and estuary had lower survival (reaches 13-17;


rkm 169-2) (Fig. 3, Fig. 4). In the 2007 season, survival of tagged smolts within the


Battle Creek tributary (rkm 534-518) was relatively very low, 63% (± 1.0 S.E.) per 10


km. Reach-specific survival rates throughout the three years in the Sacramento River-
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San Francisco Estuary ranged from 67% per 10 km reach in the lower estuary reach


(Richmond Bridge to Golden Gate; rkm 15-2) to 100% per 10 km reach in the last


river reach before the delta (City of Sacramento to Freeport; rkm 189-169) (Table 5;


Fig. 4). Detection efficiencies were also estimated grouping all three years of the


study and were found to be satisfactory for CJS modeling, ranging from 0.52 to 1.00


(Table 5).


The influence of reach on survival rates was found to be significantly more


parsimonious (ΔQAICc >7) than the Null Model (constant survival through space and


time; Table 6). All the design structure factors were then added to the survival model


including the influence of reach, and then tested for significance against the reach-

specific survival and null model. The factors of year, month, release site, and the


covariates of fork length and weight were all tested, entertaining every factorial


possibility. The only model found to be statistically more parsimonious than the


reach-specific model included month as a factor. That is, along with reach, month of


release had a substantial effect on reach-specific survival. Specifically, in both 2008


and 2009 (2007 was omitted due to only one release month) smolts released in


December had significantly higher survival rates in the upper river than smolts


released in January (Fig. 5).


Wild (natural-origin) reach-specific survival rates were estimated and


compared to study’s hatchery-origin survival rates, and in most reaches, survival per


10 km per reach for both populations were not statistically different (Fig. 6).


Furthermore, the parsimony of the survival model allowing for wild and hatchery
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smolts to have separate survival estimates was significantly less parsimonious


(ΔQAICc=12) than the full model, further suggesting that reach-specific survival of


wild smolts was not different than hatchery smolts.


Hypothesis 2

Riverine survival rates were then constrained to spatial environmental


variables and compared to a base model of constant survival per km per reach. The


environmental models found to be significantly more parsimonious were, in order of


decreasing significance, % riprap shoreline, % levee shoreline, sinuosity, diversions


per km, and finally % natural riparian habitat (Table 7). The fully reach dependent


survival model (“full model”: constant survival per reach through time) is


significantly more parsimonious than all spatial environmental models. The two most


significant spatial variables, % riprap shoreline and % levee shoreline (Fig. 7), as well


as sinuosity and diversions per km, had positive standardized beta coefficients,


indicating that an increase in the variable produced an increase in survival. Natural


riparian habitat had the opposite influence on survival rates.


Riverine survival rates were then constrained similarly with spatial-temporal


environmental variables, and again compared to a base model of constant survival per


km per reach. The models found to be significantly more parsimonious than the base


model are, in order of decreasing significance, maximum river depth, turbidity, and


WDR (Table 8). The fully reach-dependent survival model (“full model”) is


indistinguishable from the best fit environmental model (maximum river depth). The


standardized beta coefficients for the variable models are all positive with the
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exception of the WDR.  Thus, survival is greater with deeper channels, greater


turbidity, and channels that have increasing depth relative to width.


Two-sample t-tests were run to test for monthly differences in maximum river


depth, turbidity, and WDR for both 2008 and 2009. Both turbidity and WDR were


found to be significantly different by month in both years (P<0.05; Table 9).


DISCUSSION

Hypothesis 1

Overall survival of smolts to the ocean (3.9%) was low in this study relative to


other large rivers along the west coast. Welch et al. (2008) found that yearling


Chinook salmon smolts from the Snake River (tributary of the Columbia River) had


an overall survival of 27.5% (± 6.9 S.E.) to the ocean (distance traveled 910 km) in


2006. That study also found that overall survival for yearling Chinook salmon smolts


from various tributaries of the Fraser River to the ocean (distance traveled 330.8-

395.2 km) had an overall survival varying from 2.0% (± 3.6 S.E.) to 32.2% (± 20.7


S.E.), with the majority of the tributary and year-specific survival estimates above


15%. Additionally, Rechisky et al. (2009) found that outmigrating yearling Chinook


salmon smolts from the Yakima River (another tributary of the Columbia River) had


an overall survival of 28% (± 5 S.E.) to the ocean (distance traveled 655 km).


Previous studies in the Sacramento River are limited, but indicate poor survival of


Coleman Hatchery-origin late-fall run Chinook salmon smolts, similar to this study


(1.3 to 2.3% overall survival to rkm 239 (Snider 2000b, a)), but never before has


survival been calculated to ocean entry.
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It could be hypothesized that the recent declines of California’s Central Valley


Chinook salmon populations (Lindley et al. 2009) reflect the low survival seen in this


study. To put the overall outmigration survival in perspective of several life stages, I


compared this study’s outmigration survival to known smolt-to-adult return rates


(SAR). SAR represents the percent of outmigrating Chinook salmon smolts that


survive to return as adults to the original spawning reaches, and is calculated per


cohort. Therefore, SAR incorporates the combination of mortality during the


outmigration, mortality and harvest during the ocean phase, and finally pre-spawning


ground mortality and harvest in the returning river stage. Smolt-to-adult return rates


(SAR) for the Sacramento River, and specifically for Coleman hatchery-origin late-

fall run Chinook salmon, are available, but not yet for the same cohorts as in this


study. As a proxy, the long-term average SAR (brood years 1992-2005) for Coleman


hatchery-origin yearling late-fall run Chinook salmon was 0.53% (± 0.04 S.E.)


(Regional Mark Information System, http://www.rmpc.org/). If the cohorts of this


study were assumed to have similar SAR as the long-term average, overall


outmigration mortality for late-fall run Chinook salmon smolts released (or native) to


Battle Creek (and potentially the upper Sacramento River and tributaries) could be


responsible for a considerable portion of salmon mortality for such a short life stage


(Fig. 8).


Survival in the 2007 season was surprisingly low in the short nine kilometer


passage through Battle Creek to the Sacramento River.  Poor survival in Battle Creek


was likely due to high densities of Sacramento pikeminnow (Ptychocheilus grandis)


http://www.rmpc.org/).
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observed there (CJM pers. observation; K. Brown, USFWS - Coleman National Fish


Hatchery, Anderson, CA 96007, pers. comm.), potentially caused by hatchery-

subsidized prey abundance. Sacramento pikeminnow are one of the main predators of


salmonid smolts in the Sacramento River (Brown and Moyle 1981), along with


striped bass (Morone saxatilis) (Stevens 1966), largemouth bass (Micropterus

salmoides), and several avian species. Efforts to reduce the seemingly unnatural high


densities of predators in Battle Creek could be an effective strategy for maximizing


survival of the large number of outmigrating hatchery and wild-origin smolts.


Due to the resulting low numbers of fish reaching lower reaches in 2007,


survival estimates had such wide confidence intervals that understanding changes in


reach-specific mortality was difficult. The release strategy was therefore changed for


the 2008 and 2009 seasons to potentially increase the number of fish reaching


downstream sections, thus reducing survival estimate confidence intervals.


Additionally, only fish that successfully reached the Sacramento River in 2007 (131


individuals after Battle Creek) were included for comparative survival analysis with


the two following years.


In the latter two years of the study, three simultaneous release sites were used,


and appeared to have an effect on overall survival to the ocean.  The furthest


upstream release group had the lowest survival and the middle release group had the


highest survival in both years. Although the release site interaction with reach model


was less parsimonious than the base model (reach), and the 95% confidence intervals


around the cumulative survival estimates at the entrance to the ocean do not indicate
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significant differences, it is noteworthy that the pattern was consistent through both


years. One explanation for this could stem from the fact that late-fall run Chinook


salmon smolts take longer to outmigrate the further downstream they are released


(Michel unpubl. data). There could consequently be a tradeoff between bypassing the


high mortality of the upper river with additional temporal exposure to predation


further downstream. Currently, a large portion of hatchery produced Chinook salmon


smolts are released downstream of their native nurseries, in an attempt to minimize


riverine mortality, but at a cost of increased straying rates of returning adults (Quinn


1993). Considering the lack of evidence suggesting an improvement in survival with


this release strategy, the cessation of this practice should be considered by fisheries


managers.


The year of release did not have a significant influence on reach-specific


survival rates. The study occurred during three dry years (low rainfall and snowpack)


in northern California, with 2008 deemed as critically dry (Department of Water


Resources 2009). Therefore, the survival dynamics and environmental associations


found in this study represent those for years of relatively low freshwater flow and


may be different during wet years.


The rates of survival were relatively low in the reaches of the upper river and


higher in the reaches of the lower river. Total river survival was 23.5% (± 1.7 S.E.),


considerably higher than previous studies on the Sacramento River (Snider 2000a, b).


River survival on the Columbia River varied from 26.6% (± 1.5 S.E.) to 61.2 % (± 1.6


S.E.) depending on the year or release group (Welch et al. 2008). Potential reasons for
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the bipartite survival dynamics in the Sacramento River will be discussed in the


environmental influence section.


The rate of survival was relatively low in the Sacramento – San Joaquin River


Delta. Survival of outmigrating Sacramento River Chinook salmon smolts has been


known to be low in the delta (Baker and Morhardt 2001, Brandes and McLain 2001),


reportedly due to low river flow, lethally high water temperatures and entrainment


into the predator-rich interior delta by water pumping for agriculture (Kjelson and


Brandes 1989). Perry et al. (2010) found delta survival of Coleman hatchery-origin


late-fall run Chinook salmon smolts to be 35% (± 10 S.E.) and 54% (± 7 S.E.) in


December 2006 and January 2007 respectively. These estimates are similar to this


study’s estimate of delta survival (93.7% per 10km, corresponding to a total delta


survival of 52.6% (± 3 S.E.)).


Salmonid smolt survival rates in the San Francisco Estuary do not exist in the


literature (only indices allowing temporal comparisons exist (Brandes and McLain


2001)), an unfortunate information gap considering that this region had the lowest


survival rates of the outmigration corridor. Welch et al. (2008) found yearling


Chinook salmon smolts to have a survival of 61.8% (± 1.9 S.E.) through the lower


river and estuary of the Columbia River while this study found smolt survival through


the estuary alone to be 31.4%, considerably lower. Possible reasons for the low


survival through the estuary include the physiological stresses of acclimatizing to salt


water, the increased presence of some predators such as marine mammals, and the


poor condition of the estuary (Nichols et al. 1986).
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The significant effect of reach was informative, and in one case,


counterintuitive (Fig. 3). Possibly due to the biased management focus on salmon


survival in the delta (in large part motivated by concerns of the detrimental effects of


water exports for agriculture), many believe that mortality during the river migration


is greatest in the delta. Moreover, it is alleged by many that the more


anthropogenically modified lower river has lower survival rates than the more natural


upper river for outmigrating salmonids. However, this study demonstrated that not


only does the upper river have significantly lower survival than the lower river, but


the poor survival in the upper river is comparable in magnitude to the poor survival


seen in the delta and estuary.


Although the sample size of the tagged wild (natural-origin) population was


too small (n=18) for useful confidence intervals, and the tag weight-to-body weight


ratio was generally above the 5% threshold, survival for both wild and the study’s


hatchery populations were not different in most reaches. Survival rates seemed to


follow the same pattern of lower upstream survival and higher downstream survival.


Moreover, model comparison confirmed that there is no evidence that the 18 natural-

origin smolts and the study’s hatchery-origin smolts had different survival estimates.


Because none of the wild fish were detected below the lower river reaches, survival


comparisons for the delta and estuary were not possible. This evidence suggests,


though very cautiously, that hatchery-origin late-fall run Chinook salmon smolts may


be used as surrogates for studying wild late-fall run Chinook salmon smolt survival in


the Sacramento River.
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Fish weight and fork length varied significantly among years, however, the


survival models including size covariates were not found to be more parsimonious


than the base model. Specifically, I did not detect a substantial effect of weight and


fork length were not found to influence survival in a significant way. This seems


counterintuitive considering gape-limited predators almost certainly have a significant


impact on smolt survival and because larger smolts are likely superior at evading


predators. However, having a minimum size limit on smolt tagging to enforce the 5%


tag weight-to-body weight ratio restricted this study’s smolt size range to about 145


mm to 180 mm (10th percentile to 90th percentile). This may have reduced size


variability sufficiently to mask any size effects.


The month of release had a significant influence on survival in the two latter


years when two release months were implemented. In the 2008 and 2009 tagging


season, the December release groups had higher survival than the January release


groups, especially in the upper river. This could be evidence for environmental


change between months. Perry et al. (2002) found a monthly variation in survival in


the Sacramento - San Joaquin Delta in the 2006/2007 winter with Coleman hatchery


yearling late-fall run Chinook salmon smolts, except he found higher survival in


December rather than January. This variation was thought to be in part due to


variation in environmental conditions such as temperature and turbidity.


While creating a base model that would incorporate all sources of mortality


that are not attributable to the environment, I found that there seemed to be no initial


release mortality effect (i.e., immediately following release) on survival. This
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suggests that there is no evidence for hatchery “naïveté”-induced or handling stress-

induced mortality of smolts soon after release.


In conclusion, hypothesis 1 is supported. There is evidence for both spatial (by


reach) and temporal (by month) variation in survival rates for the three years of this


study and it is likely that environmental variability is a contributor. Environmental


variability is influential on the survival of outmigrating Chinook salmon smolts


because they transit a wide range of environmental conditions during their extensive


journey, all of which may have different impacts on their survivability.


Hypothesis 2

Of the spatial variables, significant relationships with riverine survival were


found with, in order of decreasing significance, % riprap shoreline, % levee shoreline,


sinuosity, diversions per km, and finally % natural riparian habitat (Table 7). With the


exception of sinuosity, the four other variables are correlated to each other by a


Pearson’s correlation coefficient of at least 0.64. This is because, in the Sacramento


River, riprap often accompanies levees and the river is leveed in the lower, more


populated reaches (therefore, less natural habitat) with more need for water


diversions. It is difficult to understand which of these correlated variables is having a


dominating influence on survival without controlling for the others. However, the


overall channelization of the river (entailing both the levee and riprap riverbank


factors) seems to have the most influential effect on smolt survival, and the


relationships between natural riparian habitat and water diversions with survival may




 34


be spurious. Sinuousity is less correlated with the other variables and will be


discussed separately.


 Traditionally, levees, riprap, and channelization have been considered to be


detrimental for salmon populations due to their degradation of spawning grounds


(reduced input of gravel) (Buer et al. 1989), lack of prey and cover, and increased


predators on juveniles (Chapman and Knudsen 1980, Schmetterling et al. 2001,


Garland et al. 2002). However, a positive effect of channelized reaches on smolt


survival was found in the present study. This might be because smolts actively


migrate through channelized reaches, thus reducing the period of exposure to sources


of mortality.  In the Sacramento River, channelized reaches often have higher


turbidity that acts as cover.  Furthermore, the presence of predators may be restricted


to only the immediate vicinity of the riprap, lowering the potential detrimental effects


of channelization. Channelization of rivers leads to increased depth and uniformity of


bathymetry and flows, all of which reduce predator habitat and ambush areas, and


ease downstream migration. Similarly, smolt survival in the Columbia River was


higher in deep impoundments compared to shallower undammed reaches (Welch et


al. 2008). In contrast, if we are to consider the non-channelized upper reaches that


exhibit low survival, it could be that the shallow run-riffle structure of the river has


created many opportunities for predators to ambush passing smolts.


Sinuosity was negatively correlated with indices for channelization, and


positively correlated with natural riparian habitat, suggesting at first that the river is


most sinuous in the upper reaches. However, unlike most other variables, sinuosity
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does not follow a strict downstream gradient. Sinuosity must consequently co-vary


with small-scale fluctuations in indices for channelization and natural riparian habitat.


Given that sinuosity had a positive beta coefficient, suggesting that the more sinuous


the river, the better the survival, sinuosity may be having an influence on survival


independent of other measured variables.


As expressed in the conceptual model, spatial variables control spatial-

temporal variables that theoretically influence riverine survival rates. Therefore, I


have concluded that channelization and sinuosity influence survival, but have not


determined the mechanisms. Of the spatial-temporal variables tested, I found


significant relationships with riverine survival for maximum river depth, turbidity,


and width-to-depth ratio (WDR). The beta coefficients for depth and WDR both


suggested similar information: the greater the absolute depth or relative to the width


of the reach, the greater the survival. Deep rivers with a low WDR are defining


characteristics of channelized reaches of a large river, in agreement with the results in


this study that channelized river reaches improved smolt survival.


Turbidity was also found to have a significant influence on survival rates, and


the positive beta coefficient indicated that more turbid water improved survival. This


theory, explained by decreased predator efficiency in turbid water, has been


established in previous research in other large rivers of the west coast, the Fraser and


the Columbia (Gregory and Levings 1998, Anderson et al. 2005). In the present


study, the concept that smolts use cryptic techniques was corroborated by the finding


that smolts exhibited a nocturnal migratory behavior in the clear upper river. As
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smolts entered the more turbid water of the lower river reaches, the nocturnal pattern


became less defined, suggesting that smolts substituted turbidity for nocturnal cover


to avoid predation (Michel unpubl. data). In the Sacramento River, water clarity in the


lower reaches is reduced in part by tributaries contributing suspended sediment.


Diversions have been known to have an important negative influence on smolt


survival, in part due to being physically drawn into the pumps, but also as a location


of high predation in response to the aggregation of smolts (Brown and Moyle 1981).


However, diversions were not found to have a significant influence on survival rates


in this study. In the river reaches used for this analysis, there were a total of 352 water


diversions, the majority being found in the lowest river reaches. These same reaches


were found to have high survival, and so it seems that the potentially detrimental


direct effects of the diversions were not important to outmigrating late-fall run


Chinooks salmon smolts within the Sacramento River under the environmental


conditions found in 2007-2009. Perhaps the larger size of the late-fall run smolts


relative to other salmon populations decreases their susceptibility to entrainment by


water diversions. Many diversions are now screened in an attempt to limit the number


of smolts that are drawn into the pumps. It should be noted that very large water


diversions within the Sacramento – San Joaquin River Delta are thought to have


strong influences on smolt survival (Brandes and McLain 2001), a region in which


the analysis of the influence of diversions did not extend in the present study.


Although channelization, turbidity, and sinuosity have accounted for a


considerable amount of variation in survival rates, other factors also appear to be
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significant. As an example, the maximum river depth survival model alone was as


parsimonious as the fully reach dependent survival model, meaning maximum river


depth alone could account for the majority of the spatial-temporal variation in


survival in these years. Furthermore, given that month of release significantly


affected survival (in 2008 and 2009), two-sample t-tests were run and found that both


turbidity and WDR were significantly different by month in both years. This is an


indication that two of the three important spatial-temporal environmental factors


could theoretically be responsible for the monthly variation in survival. In conclusion,


attempting to associate environmental variables to survival rates has produced


compelling information, reinforcing its merit in understanding survival dynamics in


this system, and thus hypothesis 2 is supported.


CONCLUSIONS

This study is one of the first telemetry studies to correlate survival rates with


riverine characteristics. Indeed, there were strong associations between environmental


variables (such as channel depth) and survival rates. Furthermore, no other salmonid


survival study has been able to measure smolt migration survival at such a high


spatial resolution. However, some key assumptions and limitations are worth


mentioning to promote the continuation and improvement of these studies.


Skalski (1998) determined seven key assumptions related to study design of a


single release-multiple recapture study; here I have addressed the three that apply to


this study:
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Marked individuals are representative of the larger population of interest:


This study was limited to hatchery fish due to their increased size and


availability over wild fish, and therefore I can theoretically only extrapolate


this study’s findings to hatchery populations with confidence. However, being


that the wild (natural-origin) and hatchery-origin populations share similar


individual sizes and migration times, the two populations are likely both


encountering the same sources of mortality during their migration.


Furthermore, results from the natural-origin late-fall run Chinook salmon


smolt pilot study suggest reach-specific survival estimates in the Sacramento


River are the same as for the hatchery-origin smolts used in this study.


Survival and detection likelihood are not influenced by tagging or sampling:


To address these issues, a series of tagging effects experiments were


conducted concurrently with the study on smolts from the same population,


late-fall run Chinook salmon smolts from Coleman National Fish Hatchery.


Results show that tagging had no effect on survival within the first 34 days


(A. Ammann, NMFS-SWFSC, Santa Cruz, CA 95060, unpubl. data), a


timeframe allowing for the majority of tagged smolts to migrate completely


out of the Sacramento river and estuary (Michel unpubl. data). Additionally,


swimming performance tests showed no statistical difference in maximum


swimming speeds between tagged and control fish (A. Ammann, NMFS-

SWFSC, Santa Cruz, CA 95060, unpubl. data).
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All tagged fish are correctly identified as either alive or dead: The first


situation that could violate this assumption is if a fish is deemed dead when it


is actually alive. This could happen if a fish sheds its tag and is therefore


deemed dead. During the above mentioned survival experiments, there was


not a single recorded case of tag ejection. The reciprocal is when a fish is


deemed alive when in fact it is dead. This could happen when a predator eats a


tagged fish and proceeds to migrate while having the tag in its gastric system.


With the technology available today, there is no definitive way of knowing if


you are tracking the predator instead of your study species (Vogel 2010). For


this study, the migration path was plotted over time and space for each


individual fish and visually inspected, and all suspicious migratory behaviors


(such as a fish moving continuously downstream then suddenly turning


around and moving back upstream, sometimes past the original release


location) were removed. However, it is likely minor inaccuracies occurred in


the survival estimates. Perhaps advances in tag technology will allow for a


system for detecting when a tagged smolt has been consumed in the near


future.


Due to the limited availability of environmental data in the Sacramento – San


Joaquin Delta and San Francisco Estuary, environmental factors were only associated


with survival in the regions beyond tidal influence. Nevertheless, while such a study


has already been attempted (Kjelson and Brandes 1989), future work should explore




 40


these relationships in the delta and estuary using the methodology presented in this


paper.


The use of the seaward Golden Gate line to calculate the detection efficiency


of the river-ward line has some shortcomings. Tidal currents are notoriously strong at


the Golden Gate, and these currents do affect detection probabilities (A. Ammann,


NMFS-SWFSC, Santa Cruz, CA 95060, unpubl. data). Due to the close proximity of


the two Golden Gate lines (within 2 km), strong tides affect the lines’ detection


probabilities similarly, which could result in fish being detected by neither line,


leading to the under-estimation of survival to ocean entry. Thus, survival estimates


for the last reach (reach 17), from Richmond Bridge to the Golden Gate, represent


minimum estimates of survival, and true survival could be significantly higher.


One conclusion that could be extrapolated from this study is the apparent need


to channelize the entire Sacramento River and artificially raise turbidity. While such


modifications may improve survival of outmigrating yearling late-fall run Chinook


salmon smolts, many other Chinook salmon life stages would be negatively impacted


(Buer et al. 1989), potentially resulting in further declines in already dwindling


salmonid populations.


The reach-specific survival estimates provide resource managers with the first


high-resolution survival information for the Sacramento River watershed, allowing


the identification of high mortality reaches for Chinook salmon smolts and the factors


that may cause mortality. For the most part, ongoing efforts to improve Chinook


salmon smolt survival have concentrated on anthropologic influences within the delta.




 41


While the findings presented here do not disagree with this emphasis, more attention


toward low survival in the upper river and estuary is warranted. This suggests the


need to not overlook natural processes in influencing survival of a species.

This study also provides insight into how survival dynamics might be


structured for U.S. Endangered Species Act (ESA) listed Sacramento River Chinook


salmon populations, which could facilitate conservation measures. Specifically, the


Sacramento River winter run Chinook salmon population is considered to be


endangered by the ESA, and smolts from this population are known to outmigrate


from the Sacramento River over the same time window, at similar sizes


(approximately 120 mm), using the same routes. It is likely that the survival dynamics


and environmental associations are similar for the late-fall run and winter Chinook


salmon populations.


 Finally, analytic exploration of possible environmental causes are valuable


not only for ecological understanding of the smolt life-history stage, but also to


increase capabilities of improving survival and making stock predictions


incorporating environmental conditions.


The imperiled Central Valley Chinook salmon stocks will require sound


fisheries and resource managing for eventual recovery, and this can not be achieved


without understanding the survival dynamics and causal mechanisms of arguably the


most vulnerable life stage. This study provides novel information on the small scale


temporal and spatial survival dynamics, on the total survival throughout the entire
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migration, and finally provides suggestions on what environmental factors could be


driving these dynamics, and how.
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Table 1. Means and standard errors for weight and fork length of acoustically-tagged

smolts by year and for all years combined. 

Year Weight ± SE (g)* Fork length ± SE (mm)* Sample size


ALL 46.0 ± 0.4 161 .5 ± 0.5 804


2007 46.6 ± 0.7
a 

164.6 ± 0.8
a


200


2008 52.6 ± 0.8
b 

168.7 ± 0.8
b


304


2009 38.9 ± 0.5
c 

152.1  ± 0.5
c


300


*Size distributions with different superscripts are significantly different (P < 0.05)
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Table 2. Locations of acoustic monitors and tagged fish release locations.


Location River km Description


Battle Creek 534 Release site 2007


Jelly's Ferry 518 Monitor location & release site 2008/09


Bend Bridge 504 Monitor location


China Rapids 492 Monitor location


Above Thomes 456 Monitor location


Below GCID 421 Monitor location


Irvine Finch 412 Monitor location & release site 2008/09


Above Ord 389 Monitor location


Butte City Bridge 363 Monitor location & release site 2008/09


Above Colusa Bridge 325 Monitor location


Meridian Bridge 309 Monitor location

Above Feather River 226 Monitor location


I-80/50 Bridge Sacramento 189 Monitor location


Freeport 169 Monitor location


Chipps Island 70 Monitor location


Benicia Bridge 52 Monitor location


Carquinez Bridge 41 Monitor location


Richmond Bridge 15 Monitor location

Golden Gate East Line 2 Monitor location


Golden Gate West Line 1 Monitor location




Table 3. Sources of environmental data for this study.


Environmental variables Data source* Data Location


Water temperature (ºC) UCD, BOR, DWR, USGS, USFWS http://cdec.water.ca.gov/


Water turbidity (NTU) BOR, DWR, USGS http://cdec.water.ca.gov/


River flow (m
3
·sec

-1
) BOR, DWR, USGS http://cdec.water.ca.gov/


Channel velocity (m·sec
-1
) HEC-RAS simulations using DWR bathymetric models Ricky Doung, Todd Hillaire pers. comm. 

†


Channel depth (m) HEC-RAS simulations using DWR bathymetric models Ricky Doung, Todd Hillaire pers. comm. 
†


River surface width (m) HEC-RAS simulations using DWR bathymetric models Ricky Doung, Todd Hillaire pers. comm. 
†


Water diversions (diversions·km
-1
) CalFish Passage Assesment Database http://nrm.dfg.ca.gov/PAD/Default.aspx


Riparian habitat type (% of total) DWR Land Use Survey http://www.water.ca.gov/landwateruse/lusrvymain.cfm


Riprap (% of total shore) DWR, USACE, USFWS Sacramento River Bank Survey Adam Henderson, James Oliver pers. comm. 
†


Levees (% of total shore) DWR Alison Groom pers. comm. 
†


*Agency Acronyms: UCD= University of California - Davis, BOR= United States Bureau of Reclamation, DWR= California Department of Water Resources, USGS= United States Geological Survey, USFWS=


United States Fish and Wildlife Service, USACE= United States Army Corps of Engineers

†
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Table 4. Survival to ocean entry by release group for each year, including an estimate

for survival for all release groups combined for both 2008 and 2009 (representing

total survival from rkm 518 to ocean), and a total estimate for a release groups and

years combined. The column “# at Golden Gate” represents actual detected smolts,

while “% of release ± SE (modeled)” represents the product of reach-specific survival

for all reachs using estimates from CJS model (and therefore accounting for detection

efficiency). “ALL” in release column represents the total studied watershed survival,

combining release group survival for each reach. In some cases (2008), comparatively

lower survival in lower reaches for 412 and 363 release groups accounted for “ALL”

survival to ocean being lower than survival for 518 release group over the same

distance.


Year 

Release 

(rkm)* # released 

# at Golden 

Gate 

% survival to ocean


± SE (modeled)


2007 518 
†


131
†


4 3.1   ±  1 .5


2008 518 102 6 6.1   ±  2.4


412 101 9 8.9  ±  2.8


363 101 7 7.2  ±  2.6


ALL 3.8  ±  0.9


2009 518 100 4 4.3  ±  2.1


412 100 12 13.2  ±  3.8


363 100 8 8.1   ±  2.7


ALL 5.5  ±  1 .2


ALL ALL 3.9 ± 0.6


*distance (kilometers) from Golden Gate

†
smolt mortality in Battle Creek not included




Table 5.  Survival rates and detection probabilities by reach for all years combined.


Region Reach # 

Rkm from 

Golden Gate 

% Survival·10km 
-1 

± SE 

Detection probability ± SE


(of downstream station)


1 518 - 504 96.8 ± 0.8 0.93 ± 0.01


2 504 - 492 94.7 ± 1 .3 1 .00 ± 0.00


3 492 - 456 91 .5 ± 0.9 0.90 ± 0.02


4 456 - 421 93.1  ± 1 .0 0.93 ± 0.02


5 421  - 412 95.2 ± 1 .9 0.93 ± 0.02


6 412 - 389 94.1  ± 0.9 0.87 ± 0.02


7 389 - 363 92.6 ± 1 .1 0.92 ± 0.02


8 363 - 325 94.2 ± 0.7 0.52 ± 0.03


9 325 - 309 98.9 ± 1 .2 0.58 ± 0.03


10 309 - 226 99.1  ± 0.3 0.71  ± 0.03


11 226 - 189 98.1  ± 0.6 0.75 ± 0.03


12 189 - 169 100 ± 0.0 0.82 ± 0.02


Sacramento/San Joaquin Delta 13 169 - 70 93.7 ± 0.5 0.89 ± 0.03


14 70 - 52 87.8 ± 2.2 0.86 ± 0.03


15 52 - 41 88.0 ± 4.2 0.81  ± 0.04


16 41  - 15 90.2 ± 3.0 0.68 ± 0.07


17 15 - 2 67.0 ± 5.8 0.85 ± 0.06*


*Calculated using the Pt. Reyes Ocean Monitor Line and Golden Gate West Monitor Line


Upper Sacramento River


Lower Sacramento River


San Francisco Estuary


5
7
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Table 6. Survival models for different study design factors, ordered from best to

worst parsimony. The Δ QAICc statistic represents the QAICc distance from the most

parsimonious model. The number of parameters includes the parameters for

estimation of detection probabilities (reach-specific).


Survival (Φ) treatment Δ AIC # Parameters


Reach x Month 0.00 53


Reach + Fork length + Weight 21 .20 37


Reach + Fork length 22.30 36


Reach x Year 24.30 71


Reach 24.60 35


Reach + Weight 25.40 36


Reach x Month x Year 31 .70 107


Reach x Release site 47.10 59


Reach x Release site x Month 60.00 101


Reach x Release site x Year 87.00 1 19


Reach x Release site x Month x Year 185.70 203


Null model (constant survival) 263.93 19 



Table 7. Survival models for spatially varying environmental data, ordered from best to worst parsimony. The Δ
QAICc statistic represents the QAICc distance from the most parsimonious model. The number of parameters includes

the parameters for estimation of detection probabilities.


Model QAICc Δ QAICc # Parameters Standardized β coefficient ± SE


Full model 2634.8 0 22


% Riprap shoreline 2687.6 52.8 14 1 .04 ± 0.22


% Levee shoreline 2697.9 63.1 14 0.61  ± 0.13


Sinuosity 2703.1 68.3 14 0.46 ± 0.10


Diversions·km
-1


2707.0 72.2 14 0.55 ± 0.15


% Natural riparian habitat 2714.3 79.5 14 -0.45 ± 0.13


% Agriculture riparian habitat 2721 .3 86.5 14


% Urban riparian habitat 2725.4 90.6 14


Base model (constant survival·km
-1
) 2725.5 90.7 13 

5
9



Table 8. Survival models for spatially and temporally varying environmental data, ordered from best to worst

parsimony. The Δ QAICc statistic represents the QAICc distance from the most parsimonious model. The number of

parameters includes the parameters for estimation of detection probabilities.


Model QAICc Δ QAICc # Parameters Standardized β coefficient ± SE


Full model 1975.1 0.0 17


Max channel depth (m) 1978.4 3.3 24 1 .91  ± 0.28


Turbidity (ntu) 2001 .4 26.3 24 1 .52 ± 0.27


Width/Depth (WDR) 2012.2 37.1 24 -0.64 ± 0.12


Flow (m
3
·sec

-1
) 2039.0 63.9 24


Base model (constant survival·km
-1
) 2039.5 64.4 23


Channel velocity (m·s
-1
) 2040.2 65.1 24


Temperature (ºC) 2041 .5 66.4 24


6
0
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Table 9. Comparisons of spatial-temporal environmental variables by year and month

of release that had a significant effect on late-fall run Chinook salmon smolt survival

using a two-sample T-test.


2-sample T-test 

Year Month Mean P Mean P Mean P


Dec 5.4 9.0 37.2


Jan 5.2 6.7 34.7


Dec 5.3 4.4 37.0


Jan 5.9 6.0 33.0 
< 0.01
2009 

0.43 

0.03 

< 0.01 

< 0.01 

Turbidity WDR
Depth 

2008 0.02
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Figure Captions

Fig. 1. Study area map including the Sacramento River, Sacramento – San Joaquin

River Delta, San Francisco Estuary and Pacific Ocean. Bull’s-eye icons signify a

release location, star symbolizes a major city, and black dot symbolizes a monitor

location.


Fig. 2. Conceptual model of ecosystem influences on late-fall run Chinook salmon

smolt survival in the Sacramento River.


 Fig. 3. Percent survival per 10 km per reach for all three study years combined.

Figure is delimited based on the regions identified on the associated map. Error

bars represent 95% confidence intervals.


Fig. 4. Cumulative survival of all smolt release groups by study year. Reach 1

represents the uppermost reach, and reach 17 represents the lowest reach, at the

ocean entry at the Golden Gate. Error bars represent 95% confidence intervals.


Fig. 5. Cumulative survival of outmigrating smolts by month of release in (a) 2008

and (b) 2009 study years. Reach 1 represents the upper-most reach, and reach 17

represents the lowest reach, in the San Francisco Bay Estuary. Error bars

represent 95% confidence intervals.


Fig. 6. Percent survival per 10 km per reach for the wild and hatchery smolt groups

over 15 river reaches (rkm 475-169 (Freeport)). Reach numbering is not the same

as employed in remainder of paper, 2009 year allowed for the use of more

monitor locations due to increased detection efficiencies. Black square symbols

represent wild survival, and gray circle symbols represent hatchery survival.

Associated error bars represent 95% confidence intervals.


Fig. 7. Percent survival per 10 km per reach (squares) for all three study years

combined for the non-tidally influenced reaches of the Sacramento River (reaches

1-12), plotted with the % of total riverbank per reach that is either riprapped

(dotted line) or leveed (dashed line). Survival error bars represent 95% confidence

intervals.


Fig. 8. Percent cumulative survival of hatchery released smolts to adult return (to the

spawning grounds). This represents a hypothetical example of the contribution of

outmigration mortality (value used is all year survival of 3.9%) to the total smolt-
to-adult rate (long term average for Coleman hatchery late-fall run Chinook

salmon smolts 0.53%). Cumulative months since departure represents the

approximate life stage timeline for adult late-fall run Chinook salmon returning as

age 3 fish, the most common returning age class (Fisher 1994). The line between
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3.9% and 0.53% does not represent true survival rate by month or per life stage, it

assumes constant survival.
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Fig. 1
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Chapter 2

The effects of environmental factors on the migratory patterns of
Sacramento River yearling late-fall run Chinook salmon

(Oncorhynchus tshawytscha)

INTRODUCTION

Migrations in the animal kingdom have fascinated humans for centuries, and


their associated folklore is intrinsically tied to many different cultures and beliefs.


Perhaps none are more written about or culturally important than the Pacific salmon


migrations. Specifically, the Chinook or “king” salmon have fascinated people for


ages due to their sheer size, power and determination.


The term migration can have a multitude of definitions, but with respect to


salmonids, perhaps migration is best defined by Dingle and Drake (2007) as “a


seasonal to-and-fro movement of populations between regions where conditions are


alternately favorable or unfavorable (including one region in which breeding


occurs)”. In this paper I attempt to better understand the beginning half of this


migration, the migration of juvenile salmon from their riverine nursery to the food-

rich ocean, often considered one of the most vulnerable stages in a Chinook salmon’s


life (Healey 1991). During this life stage, juvenile salmon undergo many


morphological, physiological, and behavioral changes (known as smoltification) to


prepare for the ocean phase of their life cycle. For the Sacramento River’s Chinook


salmon populations, this freshwater journey may be as long as 600 kilometers,
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transiting many different habitats, all with varying natural conditions. Additionally,


anthropogenic stressors such as water diversions, dams and introduced predators are


present throughout the watershed.


Studies have been investigating the timing and patterns of juvenile salmonid


migrations on a large-scale focus for decades. Thorpe and Morgan (1978) tracked


juvenile Atlantic salmon (Salmo salar) fry periodicity during outmigration in Scottish


Rivers. Raymond (1968) calculated migration rates by marking and recapturing


yearling Chinook salmon smolts traveling through the Snake and Columbia Rivers


and their impoundments. However, to best comprehend the intricacies of the


migration, one must understand that a migration is determined by the fine scale


movements that constitute it. New fish tracking technologies have allowed the


exploration of small-scale movement during migration. These technologies have


already yielded high-resolution migration data on steelhead (Oncorhynchus mykiss)


smolts in the Cheakamus River in British Columbia, Canada (Melnychuk et al. 2007),


and on sockeye salmon (Oncorhynchus nerka) smolts in the Fraser River in British


Columbia, Canada (Welch et al. 2009).  Once small-scale movement information is


attainable, our knowledge of salmon migrations can begin to delve into what might be


governing variability in movement patterns.


A few studies have explored how environmental conditions might be


influencing migration dynamics (Giorgi et al. 1997, Smith et al. 2002), but at large


spatial and temporal scales. These relationships are therefore usually limited to inter-

annual and inter-population comparisons, thereby only uncovering the strongest and
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most persistent of patterns. Smaller-scale, more subtle environmental factors may also


exert significant influences on salmonid movement patterns, which may have higher


order population consequences.  Elucidating these require incorporation of high-

resolution movement data.


I have structured this study to answer the two following hypotheses:


(1) Total migration and reach-specific movement rates of outmigrating late-

fall run Chinook salmon smolts vary spatially and temporally in the Sacramento

River, Sacramento-San Joaquin Delta and San Francisco Estuary.


(2) Environmental variables can explain a substantial portion of variation


in reach-specific movement rates.

This study aims to capitalize on one of the largest networks of acoustic


monitors in the world developed by the California Fish Tracking Consortium


(http://californiafishtracking.ucdavis.edu/), and a collaboration between the National


Oceanic and Atmospheric Administration (NOAA) and the University of California,


Davis (UCD), to provide the first high-resolution analysis of the spatial and temporal


variation of Chinook salmon movement and migration in the Sacramento River and


San Francisco Estuary. Using this information, I will provide insight into which


environmental variables (natural and anthropogenic) explain variations in movement


patterns. Finally, relating migration and movement dynamics to smolt survival will be


the important final step in understanding the intricacies of this life stage.


This work is essential for improving both our basic ecological understanding


and management of salmon. It represents an advancement in our awareness of the


http://californiafishtracking.ucdavis.edu/),
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environmental factors that likely influence the out-migration of late-fall run Chinook


salmon smolts. Without this type of information, resource managers are unable to


consider the consequences of anthropogenic activities that may have detrimental


effects on salmon populations, or predict migration dynamics of future cohorts facing


environmental changes. Finally, assessing what environmental conditions influence


variation in late-fall run Chinook salmon movement will provide guidance into


factors affecting the movement dynamics of other valued salmon runs in California.


METHODS

Study area

The Sacramento River is the longest and largest (measured by flow discharge)


river to be fully contained within the state of California, and is the third largest river


that flows in the Pacific Ocean in the contiguous United States (Fig. 1). The


headwaters are located slightly south of Mount Shasta in the lower Cascade Range,


and the river enters the ocean through the San Francisco Estuary at the Golden Gate


Bridge. The total catchment area spans approximately 70,000 km2.


The Sacramento River and its tributaries have been heavily dammed, and it is


estimated that approximately 47% of the historic area that was used for spawning,


migration and/or rearing of Chinook salmon is no longer accessible (Yoshiyama et al.


2001). The Sacramento River watershed includes diverse habitats, from a pristine


run-riffle meandering river, to a heavily channelized and impacted waterway further


south, to an expansive tidally-influenced freshwater delta at its confluence with the


San Joaquin River, and finally to the San Francisco Bay Estuary, the largest and most
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modified estuary on the West Coast of the United States (Nichols et al. 1986). The


annual mean daily discharge for the Sacramento River from 1956 to 2008 was 668


m3·s-1 (Interagency Ecological Program 2004), however, it is estimated that today,


water discharge of the Sacramento and San Joaquin Rivers combined amounts to


approximately 40% of the historical, pre-colonization discharge (Nichols et al. 1986).


The damming and water diversions of the Sacramento River and its tributaries have


also homogenized river flows throughout the year, notably reducing the historical


winter high flows and flooding (Buer et al. 1989).


The study area included approximately 92% of the current outmigration


corridor of late-fall run Chinook salmon, from release to ocean entry. Specifically, the


study area’s furthest upstream release site at Battle Creek (534 km upstream from the


Golden Gate) is only 47 km downstream from Keswick Dam, the first impassable


barrier to anadromy (Table 1).


Central Valley late-fall run Chinook salmon

The California Central Valley, which includes the Sacramento and San


Joaquin Rivers and their tributaries, has four distinct Chinook salmon populations


(runs) that migrate at different times of the year. Additionally, these populations


demonstrate one of two early life history strategies: “ocean-type” and “stream-type”


(Gilbert 1912). Ocean-type Chinook salmon are born in the lower reaches of large


rivers and spend very little time (days to weeks) in the river before migrating to the


ocean. Stream-type juveniles are born in the headwaters of large rivers or tributaries


and spend up to a year in the river (yearling) before migrating to the ocean at a
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relatively large size. Among the different runs and early life history strategies, it


becomes clear that different populations have found different migration strategies to


maximize survival (Taylor 1990).


The late-fall run is one of the four runs found in the Sacramento River


drainage, and is the only run to exhibit a predominately stream-type life history


(Moyle 2002). Coupled with the fall run, the pair form an evolutionary significant


unit (ESU) deemed a “species of concern” by the Endangered Species Act as of April


15, 2004. Juveniles exhibit a river residency of 7 to 13 months, after which smolts


will enter the ocean at a size of approximately 160 mm (Fisher 1994). Potentially due


to water diversions and increased predation in bank-altered areas, outmigrating late-

fall run juveniles accrue substantial mortality (Moyle et al. 1995).


The historical distribution of the late-fall run Chinook salmon is hard to


estimate, due to the paucity of historical data. Late-fall run Chinook salmon were not


distinguished from fall run fish until 1966, when counts were initiated after the


construction of the Red Bluff Diversion Dam (RBDD) in the mid 1960s (Yoshiyama


et al. 1998). However, we know that ideal late-fall run spawning habitat consists of


year-round cold water allowing the rearing of yearlings, and that their current


spawning range is from Red Bluff (480 river km (rkm) upstream from the Golden


Gate) up to the first barrier to anadromy, Keswick Dam (rkm 565) (Fisher 1994,


Moyle et al. 1995, Yoshiyama et al. 2001). We assume that this run historically used


the cold waters upstream of Keswick Dam, specifically the Upper Sacramento,


McCloud and Pit Rivers for spawning (Yoshiyama et al. 1998). Since these rivers are
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no longer accessible, the large majority of late-fall run Chinook salmon spawning


grounds disappeared with the construction of Keswick and Shasta Dams.


Acoustic Telemetry

I used Vemco V7-2L acoustic tags (1.58g ±  0.03 S.D.; Amirix Systems, Inc.


Halifax, Nova Scotia, Canada) and Vemco VR2/VR2W submergible monitors to


track tagged fish. The monitor array spanned 550 km of the Sacramento River


watershed from Keswick Dam to the ocean (Golden Gate) (Fig. 1). This array of


approximately 300 monitors was maintained by the California Fish Tracking


Consortium (a group of academic, federal and state resources agencies, and private


consulting firms) and positioned to maximize detection probability at key sites along


the outmigration corridor.


The acoustic monitors automatically process all detection data and drop false


detections or incomplete codes from the detection file. All detection files were


additionally subjected to standardized quality control procedures to minimize the


number of false detections. For example, detections that occurred before the release


date-time of each tag or detections that did not share a tag identification number with


any of the released fish were excluded from analysis.


Tagging and Releases


For three consecutive winters, from January 2007 to January 2009 (henceforth


referred to as 2007, 2008 and 2009 seasons, based on the year during which January


tagging occurred), 200 to 300 late-fall run Chinook salmon smolts were tagged and


released into the Sacramento River watershed. The size of tagged fish (Table 2) was
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consistent with the observed size frequency for this Chinook salmon run, albeit larger


than other life-history type Chinook salmon smolts (Fisher 1994).


Hatchery origin yearling late-fall run Chinook salmon (Oncorhynchus

tshawytscha) smolts, obtained from the United States Fish and Wildlife Service’s


(USFWS) Coleman National Fish Hatchery (Anderson, CA), were used in this study.


Approximately 85-90% of the hatchery smolts are the progeny of hatchery-origin


adults trapped in Battle Creek (tributary to the Sacramento River); the remaining


hatchery smolts’ parents are natural-origin adults trapped on the mainstem


Sacramento River just below Keswick Dam (K. Niemela, USFWS, Red Bluff, CA


96080, unpubl. report).


Acoustic tags were surgically implanted into the peritoneal cavity of


anesthetized fish as described by two studies (Adams et al. 1998a, Martinelli et al.


1998). To minimize potential effects on survival, growth and behavior, tag weight did


not exceed 5% of the total body weight. This cutoff point was conservative,


considering much of the literature shows tag-to-body ratios can be up to 6% and not


effect growth (Moore et al. 1990, Adams et al. 1998a, Martinelli et al. 1998), and up


to 8% and not affect swimming performance (Moore et al. 1990, Adams et al. 1998b,


Brown et al. 1999, Anglea et al. 2004, Lacroix et al. 2004).


Post-surgery, the fish were kept in captivity for a minimum of 24 hours to


ensure proper recovery from surgery. In the 2007 season, a portion of the tagged fish


were released each weekday for three consecutive weeks in January. In the two


following seasons, half the smolts were released in December and half in January,
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both on a single day. All releases occurred at dusk to minimize predation as the


smolts became habituated to the riverine environment.


Fish were transported at low densities (~ 10 g•l-1) via coolers with aerators to


the release sites. In years of multiple release sites, transport times were extended for


closer sites to keep potential transport stress equal among all release groups. In the


first year of the tagging effort (2007), all 200 fish were released at the Coleman


National Fish Hatchery into Battle Creek, a tributary to the Sacramento River. In the


latter two years, 300 fish a year were tagged and released simultaneously from three


release sites in the upper 150 rkm of the mainstem Sacramento River, allowing the


lower release groups a greater likelihood of reaching the lower river and estuary in


large numbers (to improve statistical confidence intervals).


Data Analysis

After the three-year study was completed, monitor locations were assessed for


their tag detection probability and functional reliability over the three-year period


(Michel unpubl. data) and their location within the watershed. Detection efficiencies


are calculated by assessing the number of tags missed by a monitor location. This can


be done if a missed tag is seen at a downstream location and therefore we can assume


it had to pass the upstream location. Detection probabilities were calculated using the


Cormack-Jolly-Seber (CJS) model (Cormack 1964, Jolly 1965, Seber 1965) within


Program MARK (created by Gary White, Colorado State University (White and


Burnham 1999)). Those monitor locations that had consistently high tag detection


probabilities and that were strategically located were chosen to delimit the river
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reaches that were used in spatially comparing movement. A total of 19 monitor


locations were chosen, from just below the most upstream release site to the Golden


Gate (Table 1).


Hypothesis 1

Total elapsed time from release site to the Golden Gate was calculated for


each smolt that survived to the Golden Gate (3-13% of all smolts, depending on


release group and year (Michel unpubl. data)) and averaged per release group (by


year and release site), representing mean total outmigration time. Respective fish


movement rates (km·day-1) from release site to ocean entrance at the Golden Gate


monitoring location were also calculated and averaged per release group, representing


the mean successful migration movement rate (MSMMR). A two-factor (year and


release site) analysis of variance (ANOVA) was performed to determine the influence


of year and release site on total movement rate. Reach-specific and smolt-specific


movement rates were then calculated using the last detection time from the upstream


monitor locations and the first detection time from the downstream monitor locations.


Distances between monitor locations were calculated in kilometers using the


geographic information system software program ArcGIS (ESRI, 1999), giving a


movement metric of kilometers per day over ground. Reach-by-reach movement rates


were also averaged among all detected smolts, and then associated to the detection


probabilities of each reach’s upstream and downstream node. The product of the two


detection probabilities equals the proportion of individual movement rates sampled


out of all the individual smolts that are estimated to have traversed each reach.
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 Once movement rates were calculated, I tested for the influence of the study


design factors. The outmigration corridor was then delimited into 5 different regions


for the ensuing ANOVA. The regions were the run-riffle upper Sacramento River, the


deeper and more uniform middle Sacramento River, the deep and channelized lower


Sacramento River, the tidally influenced Sacramento-San Joaquin River Delta, and


finally the San Francisco Estuary.  I averaged reach-specific and smolt-specific


movement rates per region. I then tested for the assumption of homogeneity of


variance and of normal distributions among the groups of observations. If these


assumptions were true, I then used a mixed-effect ANOVA, which allows for both


fixed factors (such as year and region) and random factors (in this case individual


fish) to test for the effect of year, month, release site, and region. Including region as


a factor can be a source of non-independence of measurements. An individual will


travel through different regions, and could theoretically express individual variation


in movement rates. The mixed-effect ANOVA can statistically test for fixed factor


effects while controlling for individual variation.


 As fish were only released from one location during one month in the first


year (three locations and two months in the other two years), the preliminary linear


mixed-effect ANOVA did not test for the influence of release location on movement


rates. Therefore, the analysis tested for year, region, the interaction of the two, and for


the random factor.


 To determine the influence of release location and month on movement rates,


a second mixed-effect ANOVA was then performed excluding data from the 2007
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season. This ANOVA included the factors of year, region, release site, release month,


all interaction terms, and the random factor.


 While these analyses will test for large-scale variation in movement rates (by


year and by month), small-scale variation in movement was also calculated. An


hourly reach-specific metric of movement was calculated, consisting of the frequency


of novel smolt arrivals per hour of the day for each monitor location. Novel reach


arrivals per hour were then summed for each region, giving a frequency distribution


of hourly fish movement per region.


A contingency table was then constructed to test if any discernable hourly


arrival pattern varies across regions. This was used to determine if there is


contingency (non-independence) between the two factors, region and hour of arrival


(or a binning of these). For this, Pearson’s chi-squared test of independence was used


(tests the null hypothesis that the two factors are not related).


Hypothesis 2

Environmental data were collected for this study for the majority of the river


reaches, from the release points to the upper limit of tidal influence on the river (river


km (rkm) 189; Table 3). Environmental variables collected can be grouped into two


types: several spatial-temporal variables and one purely spatial variable. All variables


were chosen a priori based on salmon migration literature and data availability for the


watershed.


The single spatial variable was river sinuosity (actual river length divided by


the length of a direct line between the nodes delimiting each reach). The temporally
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varying spatial variables included water temperature (ºC), river flow (m3·s-1), water


turbidity (Nephelometric Turbidity Units (ntu); McCormick et al. 1998), channel


water velocity (m·s-1), and a ratio of river surface width (m) to maximum river depth


(m) (WDR; Tiffan et al. 2009). The WDR will increase as the river becomes


shallower and wider. Spatial-temporal variables such as temperature, turbidity and


flow were recorded directly from gauge stations on the river (Table 3). Measurements


such as water velocity and WDR were simulated incorporating actual flow


recordings, high resolution bathymetric cross-sections and gradient information in the


riverine hydraulics modeling software program HEC-RAS (US Army Corps of


Hydraulic Engineers 1995). All spatial variables were calculated using the program

ArcGIS.


All reach-specific spatial-temporal environmental variables were then


averaged by reach and by day. Spatial variables were averaged per reach. All reach-

specific spatial and spatial-temporal environmental variables were then associated


with their respective reach-specific movement rates in a relational database


(Microsoft SQL Server 2005, Microsoft Corporation). When a specific smolt


movement spanned several days, weighted averages of the appropriate daily spatial-

temporal environmental variables were used. A Pearson’s correlation test was then


performed to calculate correlation coefficients for each environmental variable,


similar to Smith et al. (2002). Additionally, the statistical significance of each


environmental correlation coefficient on movement was calculated.




 85


Different environmental variables are frequently correlated with one another,


and caution must be employed to minimize spurious conclusions. I therefore


calculated all Pearson’s correlation coefficients between variables that had strong


influences on movement rates. When there was a significant relationship between two


environmental variables (r2 > 0.7 and P < 0.05 (Giorgi et al. 1997)), the lesser of the


two movement-correlated variables was dropped from further analysis.


Once the more influential environmental variables were determined, their


means and standard errors were calculated to the resolution of each significant study


design factor (e.g. if year was significant, mean and standard error were calculated for


each year). Using this information, I suggest hypotheses for how the environmental


variables may have influenced spatial and temporal variability in movement rates.


RESULTS

Hypothesis 1

The mean successful migration movement rate (MSMMR) and total


outmigration time per release group varied by release site and by year (Table 4).


Mean total movement rates decreased the further downstream the release group was


released. Movement rates varied from 14.32 km·day-1 (± 1.32 S.E.) for the 2009 Butte


City release group (rkm 363) to 23.53 km·day-1 (± 3.64 S.E.) for the 2007 Battle


Creek release group (rkm 534). Total outmigration time increased the further


downstream the release group was released, varying from approximately 39 days for


the 2008 Butte City release group to approximately 24 days for the 2007 Battle Creek
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release group. Analysis of variance confirmed this pattern: release location had a


significant effect on MSMMR (P <0.05), while year did not (P 0.2).


Reach-specific movement rates varied substantially from 15.3 km·day-1 in the


Sacramento-San Joaquin River Delta to 89.1 km·day-1 in a reach of the upper river


region (Table 5). The proportion of fish sampled varied due to differences in


detection efficiencies throughout the watershed.


The distributions of movement rates per year and per region did not violate


the assumptions of homogeneity of variances and of normal distributions were not


violated, and therefore the mixed-effect ANOVA was performed. Results from the


initial all-years mixed-effect ANOVA, including region and year factors, showed that


region had a significant influence (P <0.001) on the variation in movement rates, as


well as the interaction between region and year (i.e. the relative movement rates


among regions differed among years; Table 6). Year did not have a significant effect


on movement rates (P 0.07), but still warrants further investigation (Fig. 2).


Movement rates decreased as fish moved from upstream regions downstream toward


ocean entry, with the fastest movement rates found in the upper river region, and the


slowest in the Sacramento-San Joaquin River Delta (Fig. 3). The interaction between


region and year suggested a similar trend in 2007 and 2008 of generally decreasing


movement rates the further downstream the region is, but in 2009, movement rates


were generally slower and more uniform among regions (Fig. 4). As expected, the


random factor, individual fish, was significant (P <0.001), suggesting that there was


great variation in movement rates among individual fish.
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Results from the 2008 and 2009-effect ANOVA included the additional


factors of release month and release site (Table 7). Results from this analysis indicate


a significant influence of region and the interaction between year and region (P


<0.001) as was the case for the three-year analysis. The large majority of interactions


including the region factor were significant. The influence of year, release site, and


release month on the variation in movement rates was not significant, although again


year had a strong, but statistically insignificant, influence on movement rates (P 0.07).


Smolt movement varied substantially per hour, notably in the upper and


middle river regions, where the majority of daily movement occured between


midnight and 700 hours, then again from 1700 hours and midnight, suggesting a


nocturnal movement (Fig. 5). The nocturnal pattern in arrivals seemed to lessen in


strength the further downstream the region is found, to the point where in the estuary,


smolts moved at all times of the day. To determine if the nocturnal pattern truly


varied in strength per region, a Pearson’s chi-squared test of independence was


performed. Hour of arrival was therefore binned into two groups, day hours (arrival


hours 7-17) and night hours (arrival hours 0-6, and 18-23) based on average sunrise


and sunset during the time period of the study. A five-by-two contingency table of


arrivals was created with the categorical factors of day/night and region. A Pearson’s


chi-squared test of independence indicated that the night/day arrival factor was


significantly dependent on region (P <0.001).


Hypothesis 2
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Several variables tested had significant relationships with movement rate (P


<0.001; Table 8). Reach sinuosity had the strongest association with movement rates,


suggesting that the more sinuous a river reach is, the faster a fish will travel through


it. Width-to-depth ratio (WDR) had a negative relationship with movement rates,


suggesting that the deeper and narrower reaches (low WDR) will have faster


movement rates. Water velocity and river flow were both positively related to


movement rates. Temperature was also positively related to movement rates, but was


a relatively weak predictor of variability in movement rates. This suggests that smolts


moved faster through faster flowing water, greater volume of water flow, and


narrower-deeper channels.


All selected environmental variables were then tested for correlations among


each other. No variables were found to be overly correlated using previously


mentioned cutoff (r2 > 0.7 and P < 0.05). However, while not significant, the negative


relationship between WDR and sinuosity (r2=0.27, P <0.001) was the strongest


correlation.


Mean sinuosity was seen to vary among region in a generally decreasing trend


from the upper river down to the lower river (Table 9). Mean water velocity also


followed this trend, with a sizeable decrease in regional mean velocity between the


middle river and the lower river. Mean water velocity also varied among years, with a


generally decreasing trend from 2007 to 2009.


DISCUSSION

Hypothesis 1
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Mean successful migration movement rate (MSMMR) varied significantly by


release location but did not vary significantly among the three years of the study.


Effectively, movement rates were consistently slower the further downstream a group


was released. Consequently, the mean total outmigration time for each group


reflected this strong pattern: the further downstream a group was released, the longer


the group took to reach the ocean. Therefore, smolts released further upstream, closer


to their native nurseries, are exhibiting behavioral differences relative to the


downstream released smolts with regard to migration that suggest that environmental


cues that trigger migration are subdued or absent from the lower, more distant sites


from their evolutionary migration origin.


Migration rates from the Battle Creek release site to the ocean in 2007 (23.53


km·day-1) were very similar to migration rates of late-fall run Chinook salmon smolts


released at the same site and recaptured at the beginning of the San Francisco Estuary


in a previous study (20.63 km·day-1, USFWS data 1998-2003,


www.delta.dfg.ca.gov/usfws/maps/index.htm). The mean migration rate for yearling


Chinook salmon smolts on the Columbia River, another large West Coast river, was


21.5 km·day-1 (Giorgi et al. 1997). Although migration rates of yearling Chinook


salmon on the Fraser River are not available in the literature, similarly sized sockeye


salmon (Oncorhynchus nerka) smolts navigated the watershed at a rate of 15 to 30


km·day-1 (Welch et al. 2009). The results for late-fall Chinook salmon smolts


presented here in combination with those of yearlings from other studies strongly


http://www.delta.dfg.ca.gov/usfws/maps/index.htm).
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suggest that like-sized smolts exhibit very similar migration rates regardless of river


they reside in.


Reach-specific movement rates displayed substantial variation among reaches


and within reaches for some of the lower reaches. Specifically, the movement rates


within the estuary have the largest variability. This is likely due to the influence of


tidal dynamics on movement rates, as seen by Lacroix and McCurdy (1996) with


Atlantic salmon (Salmo salar) smolts.


While mean movement rates appeared to be fastest in 2007, slower in 2008,


and slowest in 2009, movement rates did not differ significantly among years


(although there were greater differences than observed in most other factors).


Coupled with the fact that MSMMR did not differ significantly among years, this


could be misconstrued to suggest that yearly environmental variation has little effect


on movement rates in general. However, the three years of the study were all


similarly dry years resulting in low freshwater flows (DWR 2009. WSIHIST Water


Year Hydrologic Classification Indices [http://cdec.water.ca.gov/cgi-

progs/iodir/wsihist]). Therefore, movement rates and environmental associations


found in this study may only be indicative of variation among similarly dry years.


The large majority of movement, particularly in the river regions, was


nocturnal, which has been seen by other studies (McCormick et al. 1998, Ibbotson et


al. 2006). This has often been suggested to be a predator avoidance strategy,


particularly from visual predators like some fish and birds (McCormick et al. 1998,


Ibbotson et al. 2006).


http://cdec.water.ca.gov/cgi-progs/iodir/wsihist]).
http://cdec.water.ca.gov/cgi-progs/iodir/wsihist]).
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In addition to stealth by night movement, water turbidity has been shown to


reduce predation (Gregory and Levings 1998), and warmer water temperatures allow


for more efficient predator evasion in salmonid smolts due to increased


neuromuscular escape responses. Also seen by Ibbotson et al. (2006), this is


particularly interesting because the nocturnal migration pattern dissipates in the lower


river region, which had higher turbidity and warmer water temperatures, suggesting


smolts may only use night travel as a predator avoidance strategy until water turbidity


and water temperature is protective enough to allow migration at all hours.


In conclusion, I find that hypothesis 1 is supported. There is evidence for both


spatial (by region) and temporal (by hour and by year (although not significantly))


variation in movement rates for the three years of this study and it is likely that


environmental variability is a contributor.


Hypothesis 2

River sinuosity had the strongest relationship with movement rates among the


measured environmental variables. The relationship suggested that the more sinuous


river reaches exhibited faster smolt movement rates. Sinuosity is associated with


channel complexity and diverse flow velocities. In the Sacramento River, the most


sinuous river reaches are also the most natural and unmodified reaches. Therefore, if


a smolt were to seek the fastest water velocities in the river’s cross-section, it would


benefit from more energy-efficient movement (Kemp et al. 2005) and expedite


transit. Since some of the greatest river velocities occurred in the reaches with the
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greatest sinuosity, where late-fall run smolts moved the fastest, this association may


be operative.


Width-to-depth ratios (WDR) were found to have a moderately strong


negative relationship with movement rates, meaning that the narrower and deeper


reaches would exhibit faster smolt movement. This relationship is counter-intuitive


when considering that the lower river region had the slowest river movement rates


and also had the lowest WDR. However, the upper river region did not have the


highest mean WDR, suggesting that the fast movement rates in this region may be


associated to medium to low WDR values, driving this relationship. Additionally,


WDR was also found to associate negatively with sinuosity, suggesting that the


narrower and deeper reachs (low WDR) are relatively more sinuous. The correlation


between WDR and sinuosity (Pearson’s correlation coefficient (r) -0.52), and between


sinuosity and movement rates (r 0.53), were both substantially stronger than the


correlation between WDR and movement rates (r -0.26), leading me to the conclusion


that the counter-intuitive direction of the correlation between WDR and movement


rates may be an indirect effect through the intermediary of the much stronger


relationship between sinuosity and movement rate.


Flow has often been suggested to influence movement rates (Giorgi et al.


1997). In this study, flow was found to be positively related with movement rates.


Flow generally increases in the downstream direction, in large part due to the


progressive addition of flow from the numerous tributaries in this system. However,


the mean flows experienced by smolts in this study were very similar across regions.
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One possible interpretation of the relationship between flow and movement could be


that it is the temporal (and not the spatial) variability in flow that drives this


relationship. Salmonid smolts are known to initiate their downstream migration


during storm events (McCormick et al. 1998), analogous with high flows.


Additionally, there was evidence of increased watershed-wide smolt movements


during particularly strong storm events. I therefore conclude that the relationship


between flow and movement rate is potentially due to drastic increases in flow.


Movement rates and velocity were found to be positively correlated. Faster


water velocities can help a smolt move downstream at faster rates by increasing


passive transport. This relationship was believed to be the most important


environmental factor a priori, however, the strength of the correlation was not as


strong as some of the other relationships. A reason for this could be that the nocturnal


behavior of smolts in the upper river decreases the total number of hours that smolts


devote to migration. Although smolts moved the fastest in the upper regions of the


river, movement rates would likely have been faster if the smolts travelled at all times


of the day and benefitted from the maximum potential of the substantially faster water


velocities.


Variation in water velocities and nocturnal movement were assessed in an


attempt to explain regional differences in movement rates. I found that nocturnal


movement decreases progressively as smolts moved further downstream toward the


ocean, with smolts moving more continuously. However, lower river reaches also


exhibit slower movement rates, probably in part due to the substantially slower water
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velocities. This could suggest a trade-off between predator avoidance via nocturnal


travel upstream and increased continuous daily movement downstream when


velocities do not provide relatively efficient passive transport. Although turbidity was


not seen to influence movement rates directly in this study, turbidity may increase


survival by decreasing predator efficiency (Michel unpubl. data). Thus, increased


daylight migration (increasing daily travelled distance, thereby reducing temporal


exposure to predators) coupled with increased turbidity may act in concert to improve


predator avoidance during seaward migration.


Of the environmental variables found to have a significant relationship with


movement rates, only water velocity was found to fluctuate similarly to the yearly


fluctuations in movement rates. Mean water velocity declined between 2007 and


2009, while mean and region-specific movement rates followed the same trend. This


evidence supports the a priori theory that water velocity may be one of the key


factors influencing yearly differences in movement rates.


The evidence that fluctuations in river sinuosity and water velocities could


explain spatial and temporal variation in movement rates, I find that hypothesis 2 is


supported.


CONCLUSIONS

The relationship between movement patterns and migration strategies with


environmental factors allows hypothesizing on which factors have the most important


effect. Relating these same movement and migration patterns to immediate survival
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provides invaluable information on the success of the different strategies, and in turn


provides evidence for how those strategies might have evolved.


Survival data from these same late-fall run individuals, with respect to release


location shows that the furthest upstream release site group (rkm 518) experienced the


worst survival, but the middle release site group (rkm 413) experienced the highest


survival (Michel unpubl. data). Additionally, the smolts experienced relatively low


survival in the upper and middle river regions, and high survival in the lower river


region. When considered with the MSMMR of these same release groups, it becomes


apparent that there could be tradeoff between the benefit of bypassing the upper river


region and its high associated mortality, and the detriment of additional temporal


exposure to predation of the groups released further downstream. It should be added


that while releasing smolts downstream improves survival in some cases, it also


increases straying of returning adults, which has been known to be detrimental to


natural reproductive success (Quinn 1993).

This low survival in the upper reaches of the Sacramento River coincided with


the location of the primarily nocturnal migration, while the high survival coincides


with the temporally uniform timing of migration seen in the lower river reaches.


Additionally, turbidity was found to have one of the strongest associations with


survival rates (Michel unpubl. data).  Taken together, these results suggest that the


relatively clear waters of the upper and middle river regions have much higher


predation rates, which in turn may have formed the nocturnal migration strategy to


minimize mortality. The lower river region, being more turbid and therefore more
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hospitable to smolt survival (Gregory and Levings 1998), eased the nocturnal strategy


to a more temporally uniform migration allowing smolts to travel larger distances per


day.


The slowest movement rates were seen in the Sacramento-San Joaquin River


Delta, a highly modified and complex system of sloughs and channels. Furthermore,


water diversions in the southern delta remove nearly 40% of the historic flows


through the delta, resulting in substantial modifications in flow dynamics and


directions (Nichols et al. 1986). The result is a region in which smolts have a high


susceptibility of entering the interior delta, predisposing them to longer routes, higher


predation from invasive predators, and the risk of entrainment into water pump,


inevitably leading to higher mortality rates (Perry et al. 2010). Interestingly, although


movement rates were relatively slow compared to other regions, suggesting many


smolts were diverted into the interior delta, the survival rate for these same smolts


was still higher than in the San Francisco Estuary, and on par with survival rates from


the upper river regions.


The delta has long been known to have an important nursery function,


especially for subyearling fall run Chinook salmon (Kjelson et al. 1982). However,


smolts in this study were in the delta for an average of 6.5 days, a period too short for


significant nursery function. This may be because delta and estuarine residency is


known to be shorter for yearling Chinook salmon smolts than for subyearlings in


many watersheds along the West coast of North America (Healey 1991), but could


also be an adaptation due to the above mentioned sources of mortality and the human
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modification of the delta, leading to dramatically decreased wetlands (Frayer et al.


1989) and potentially as a result, decreased benefits from foraging there.


This study has presented the spatial and temporal variability in movement


rates and migration strategy, and supplied evidence that water velocity and nocturnal


travel work cohesively in explaining yearly and regional variation in movement rates.


 This study has also provided novel information on salmonid smolt


migration, and will be valuable to resource managers. However, the study had some


limitations that should not be overlooked. Perhaps most importantly, the study


occurred during three years of very low precipitation and river flows for the


Sacramento River Valley, with 2008 being deemed critically dry (DWR 2009.


WSIHIST Water Year Hydrologic Classification Indices


[http://cdec.water.ca.gov/cgi-progs/iodir/wsihist]). Therefore the movement dynamics


and environmental associations may be different during years of substantially greater


flow.


Another limitation of acoustic telemetry data is that one cannot positively


know when a smolt has been eaten by a predator (Vogel 2010). While I attempted to


filter the receiver detections to the best of my abilities, it is possible that some minor


inaccuracies in movement rates exist from data recorded from predators retaining the


tag gastrically. These data, if present, would not change mean calculated movement


rates substantially, but does stress the need for tag technology that will allow


detection of when a tagged smolt, or any tagged animal, has been consumed.


http://cdec.water.ca.gov/cgi-progs/iodir/wsihist]).
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Finally, due to the limited availability of environmental data in the


Sacramento – San Joaquin Delta and San Francisco Estuary, movement dynamics


were associated with only environmental factors in the river reaches beyond tidal


influence. Future work should explore these relationships in the delta and estuary


using the methodology presented in this paper.


The results found in this study provide resource managers with valuable


information that can be used to improve survival for the imperiled Sacramento River


Chinook salmon populations. This study is the first in the Sacramento River


watershed to provide reliable information on the total migration time and high-

resolution reach specific movement rates for late-fall run Chinook salmon smolts.


This information allows resource managers to better comprehend when and for how


long smolts will be migrating, as well as smolt transit times in specific areas in the


watershed, thus efficiently guiding the timing and scope of water and riparian


development activities.


This study found significant evidence for an increasingly long total


outmigration time and MSMMR for groups released progressively further from their


native nurseries. This information is especially germane to the release strategies


employed by Chinook salmon hatcheries in the Central Valley. A large portion of


these hatchery-produced smolts are trucked and released in the estuary to reduce pre-

ocean mortality and therefore maximize returns. However, if these smolts react


similarly to this study’s smolts when released downriver of their natal origins, they


may be subject to high predation rates as they slowly acclimate and begin their
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outmigration. This may be evidence to discontinue the aforementioned hatchery


release strategy.


This study also elucidated a strong nocturnal migration pattern during a


portion of the outmigration. While other examples of nocturnal migration in


salmonids exists in the literature (McCormick et al. 1998, Ibbotson et al. 2006), and


may not be novel information to resource managers, the added complexity that the


nocturnal migration pattern dissipates as the smolts progressively near the ocean is


valuable information. Many detrimental anthropogenic impacts such as pile driving


and dredging occur during the day based on the assumption that the fish migrate


nocturnally (D. Hampton, NMFS Protected Resources Division, Sacramento, CA


95814, pers. comm.). This study shows that this assumption is not supported in the


lower region of the river, as well as in the delta and estuary.


Finally, the hypothesis that water velocity and turbidity co-vary with (and


perhaps govern) the extent to which smolts migrate nocturnally will be a useful tool


in predicting the migrations of future cohorts facing environmental changes.


The imperiled Central Valley Chinook salmon stocks will require sound


fisheries and resource managing for any hope of an eventual recovery, and this cannot


be achieved without understanding the movement and migration dynamics and causal


mechanisms of emigrating smolts, arguably the most vulnerable life stage. This study


provides new insights on small scale temporal and spatial movement dynamics, the


migration through the entire watershed, and finally provides suggestions on what and


how environmental factors are influencing these dynamics.
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Table 1. Locations of acoustic monitors and tagged fish release locations.


 Location River km Description


Battle Creek 534 Release site 2007


Jelly's Ferry 518 Monitor location & release site 2008/09


Bend Bridge 504 Monitor location


China Rapids 492 Monitor location


Above Thomes 456 Monitor location


Below GCID 421 Monitor location


Irvine Finch 412 Monitor location & release site 2008/09


Above Ord 389 Monitor location


Butte City Bridge 363 Monitor location & release site 2008/09


Above Colusa Bridge 325 Monitor location


Meridian Bridge 309 Monitor location


Above Feather River 226 Monitor location


I-80/50 Bridge Sacramento 189 Monitor location


Freeport 169 Monitor location


Chipps Island 70 Monitor location


Benicia Bridge 52 Monitor location


Carquinez Bridge 41 Monitor location


Richmond Bridge 15 Monitor location


Golden Gate East Line 2 Monitor location


Golden Gate West Line 1 Monitor location 
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Table 2. Means and standard errors for weight and fork length of acoustically-tagged

smolts by year and for all years combined. 

Year Weight ± SE (g)* Fork length ± SE (mm)* Sample size


ALL 46.0 ± 0.4 161 .5 ± 0.5 804


2007 46.6 ± 0.7
a


164.6 ± 0.8
a


200


2008 52.6 ± 0.8
b


168.7 ± 0.8
b


304


2009 38.9 ± 0.5
c


152.1  ± 0.5
c


300


*Size distributions with different superscripts are significantly different (P < 0.05)




         Table 3. Sources of environmental data for this study.


Environmental variables Data source * Data Location


Water temperature (ºC) UCD, BOR, DWR, USGS, USFWS http://cdec.water.ca.gov/


Water turbidity (NTU) BOR, DWR, USGS http://cdec.water.ca.gov/


River flow (m
3
·sec

-1
) BOR, DWR, USGS http://cdec.water.ca.gov/


Channel water velocity (m·sec
-1
) HEC-RAS simulations using DWR bathymetric models Ricky Doung, Todd Hillaire pers. comm. 

†


Maximum river depth (m) HEC-RAS simulations using DWR bathymetric models Ricky Doung, Todd Hillaire pers. comm. 
†


River surface width (m) HEC-RAS simulations using DWR bathymetric models Ricky Doung, Todd Hillaire pers. comm. 
†


*Agency Acronyms: UCD= University of California - Davis, BOR= United States Bureau of Reclamation, DWR= California Department of Water Resources, USGS= United


States Geological Survey, USFWS= United States Fish and Wildlife Service, USACE= United States Army Corps of Engineers

† 
Ricky Doung (rdoung@water.ca.gov); Todd Hillaire (hillaire@water.ca.gov)


1
0
8

http://cdec.water.ca.gov/
http://cdec.water.ca.gov/
http://cdec.water.ca.gov/
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Table 4. Mean total outmigration time in days and mean successful migration

movement rate (MSMMR) for all years and all release groups.


Year Release (rkm)* # released 

Mean total outmigration time


(days) ± SE MSMMR (km·day
-1
) ± SE


2007 534 200 24.2  ±  3.3 23.5  ±  3.6


2008 517 102 28.9  ±  2.8 18.9  ±  1 .9


413 101 30.2  ±  5.5 18.1   ±  3.3


363 101 39.4  ±  3.0 15.6  ±  1 .8


2009 517 100 24.5  ±  4.3 22.7  ±  3.1


413 100 24.7  ±  2.4 18.1   ±  1 .3


363 100 27.1   ±  2.7 14.3  ±  1 .3


*distance (river km (rkm)) from Golden Gate 
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Table 5. Mean movement rates (km·day-1) and the respective proportions of fish

sampled for each of the 17 reaches. Proportion sampled is the product of the detection

efficiencies from the monitoring stations above and below each specific reach.


Region Reach 

Rkm from 

Golden Gate 

Mean movement rate 

(km·day 
-1
) ± SE 

Proportion sampled


± SE


1 518 - 504 69.5 ± 1 .5 0.93 ± 0.01


2 504 - 492 89.1  ± 1 .7 0.93 ± 0.01


3 492 - 456 41 .2 ± 1 .3 0.90 ± 0.02


4 456 - 421 35 ± 1 .7 0.84 ± 0.03


5 421  - 412 55.3 ± 2.6 0.86 ± 0.03


6 412 - 389 36.9 ± 1 .5 0.81  ± 0.03


7 389 - 363 35.7 ± 1 .7 0.80 ± 0.03


8 363 - 325 36 ± 1 .4 0.48 ± 0.03


9 325 - 309 56.4 ± 2.1 0.30 ± 0.02


10 309 - 226 40.9 ± 1 .3 0.41  ± 0.03


11 226 - 189 34.1  ± 1 .1 0.53 ± 0.03


12 189 - 169 26.2 ± 1 0.62 ± 0.03


Sacramento/San Joaquin Delta 13 169 - 70 15.3 ± 0.8 0.73 ± 0.03


14 70 - 52 18.5 ± 2 0.77 ± 0.04


15 52 - 41 31 .2 ± 4.7 0.70 ± 0.04


16 41  - 15 26.2 ± 4.2 0.55 ± 0.06


17 15 - 2 32.8 ± 5.5 0.58 ± 0.07*


*Calculated using the Pt. Reyes Ocean Monitor Line and Golden Gate West Monitor Line


Upper Sacramento River 

Middle Sacramento River


Lower Sacramento River 

San Francisco Estuary
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Table 6. Results from the 3-year linear mixed-effect ANOVA looking at the

influence of region, year, the interactive term and individual fish on movement rates.


Source Numerator df Denominator df F-Ratio P


Region 4 534 2.696 <0.001


Year 2 956.953 1 07.462 0.07


Year x Region 8 534 6.875 <0.001


Individual Fish (random factor) 615 534 1 .562 <0.001 
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Table 7. Results from the 2008-2009 linear mixed-effect ANOVA looking at the

influence of region, year, release month, release site, all the interactive terms and

individual fish on movement rates.


Source Numerator df Denominator df F-Ratio P


Region 4 453 3.224 <0.001


Year 1 787.872 1 .398 0.07


Month 1 787.872 0.03 0.24


Site 2 807.501 100.287 0.97


Year x Region 4 453 0.223 <0.001


Month x Region 4 453 1 .36 0.1 3


Site x Region 5 453 10.509 0.04


Month x Year 1 789.894 1 .765 0.64


Site x Year 2 807.501 1 .775 0.37


Site x Month 2 807.501 2.357 0.26


Month x Year x Region 4 453 0.281 0.1 1


Site x Year x Region 5 453 1 .902 0.03


Site x Month x Region 5 453 2.538 0.10


Site x Month x Year 2 807.501 1 .887 0.76


Site x Month x Year x Region 5 453 0.454 0.81


Individual Fish (random factor) 484 453 1 .244 0.01 
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Table 8. Results from the Pearson’s correlation analysis between all environmental

variables and movement rates. P represents whether the correlation’s slope is

significantly different from zero.


Environmental Variable 

Pearson's Correlation coefficient with


Movement Rate (km·day
-1
) P


Sinuosity 0.53 <0.001


WDR -0.26 <0.001


Water Velocity (m·s
-1
) 0.21 <0.001


Flow (m
3
·s

-1
) 0.21 <0.001


Temperature (Cº) 0.06 0.02


Turbidity (ntu) 0.03 0.18 



 114


Table 9. Mean and standard error by river region and by year for river sinuosity, river

width-to-depth ratio (WDR), water velocity (m·s-1), and water flow(m3·s-1). Sinuosity

is a spatial variable only, so there are no year values.


Variable Upper River Middle River Lower River 2007 2008 2009


Sinuosity 2.23 ± 0.02 1 .57 ± 0.01 1 .53 ± 0.01


WDR 36.4 ± 0.7 42.0 ± 0.3 23.9 ± 0.3 24.0 ± 0.0 47.5 ± 0.5 30.8 ± 0.4


Velocity 0.91  ± 0.01 0.84 ± 0.00 0.29 ± 0.01 0.98 ± 0.01 0.84 ± 0.00 0.50 ± 0.01


Flow 161  ± 1 163 ± 1 159 ± 2 168 ± 1 161  ± 1 159 ± 1 
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Figure Captions

Fig. 1. Map of the study area, including the Sacramento River, Sacramento – San

Joaquin River Delta, San Francisco Estuary, and Pacific Ocean. Bull’s-eye icons

signify a release locations, stars symbolizes major cities, and black dots

symbolizes monitor locations used in final analysis. Shaded regions delimit (from

North to South) the upper river, middle river, lower river, delta, and estuary.


Fig. 2. Movement rate distributions per year for all regions combined. These boxplots

depict the general decrease in movement rates from 2007 to 2009. The bold

horizontal lines that dissect the boxes represents the median values, while the

upper and lower edges of the boxes represent the 75th and 25th percentiles of the

movement data, respectively. The upper and lower ends of the vertical lines

represent the maximum and minimum values of the movement data, unless

outliers are present. Outliers are data points that are above the 75th percentile or

below the 25th percentile by more than 1.5 times the inter-quartile range (the

range from the 25th to 75th percentile) of each specific boxplot.


Fig. 3. Movement rate distributions per region for all years. These boxplots depicts

the general decrease in movement rates from the upper river region to the delta.

The boxplots are constructed in the same fashion as Fig. 2.


Fig. 4. Stacked boxplot of movement rate distributions per region by year. These

boxplots depict the interaction of region and year. The boxplots are constructed in

the same fashion as Fig. 2.


Fig. 5. Individual smolt arrivals to new monitor locations per hour, grouped by

region. Each plot is a histogram, representing the percent of arrivals for each hour

bin out of all arrivals for that region (N).
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