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T
he conservation of biodiversity is one of the most


pressing global concerns. Numerous government and
nongovernment agencies have invested large sums ofmoney

to protect species and the habitats on which they depend (Sin-
clair et al. 1995). Such action is predicated on the idea that the

rich diversity oflife has intrinsic value that deserves protec-
tion. Even so, such qualitative valuation routinely does not get

appropriate weighting in policy decisions, which tend to be

based on quantitative financial considerations. This problem

has triggered a transformation in thinking about biodiversity

conservation in terms ofexplicit investment opportunities that

provide financial return (Daily et al. 2000). Such a change in

thinking is motivated by recent scientific evidence that species

collectively may provide functions in ecosystems (e.g., pro-
duction, consumption, decomposition) that provide a range

of services (e.g., regulation of water quality, regulation of

greenhouse gases, recycling of organic wastes) vital to sus-
taining life and human welfare (Costanza and Folke 1997,

Costanza et al. 1997, Daily et al. 2000, Myers et al. 2000, de

Groot et al. 2002,Kinzig et al. 2002). Indeed, the value ofthese

ecosystem services may rival or exceed the value of com-
modities derived from traditionally managed natural re-
source sectors such as forestry, fisheries, and agriculture

(Costanza and Folke 1997, Daily 1997).


A key challenge in making the idea of biodiversity con-
servation through investment in ecosystem services opera-
tional is empirically quantifying the link between levels of

biodiversity and levels ofthe functions that produce a desired


ecosystem service (Daily et al. 2000). Ecological science has

begun such an effort, but the focus has largely been on dis-
cerning how average or expected levels ofa service change with

the level ofbiodiversity. Yet natural ecosystem function can

be quite variable. This variability poses the risk that a speci-
fied level of biodiversity may perform below expectations.

Knowing the magnitude ofsuch risks is as critical to invest-
ment decisionmaking as is knowing the expected perfor-
mance. Thus, developing an information base that enables

decisionmakers to weigh competing risks requires some re-
alignment in thinking about the empirical research that aims

to quantify links between biodiversity and ecosystem function.

The goal of this article is to show how such a realignment

might be made.


To develop our case, we provide a conceptual framework

that integrates linkages among biodiversity, ecosystem func-
tion, and investment in the context of performance risk in

much the same way as is done for portfolios offinancial as-
sets. This framework allows us to conceptualize biodiversity

as a portfolio ofnatural assets (Weitzman 2000, Schläpfer et
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Biodiversity has the potential to influence ecological services. Management ofecological services thus includes investments in biodiversity, which can

be viewed as a portfolio ofgenes, species, and ecosystems. As with all investments, it becomes critical to understand how risk varies with the diversity

ofthe portfolio. The goal ofthis article is to develop a conceptual framework, based on portfolio theory, that links levels ofbiodiversity and ecosystem

services in the context of risk-adjusted performance. We illustrate our concept with data from temperate grassland experiments conducted to

examine the link between plant species diversity and biomass production or yield. These data suggest that increased plant species diversity has

considerable insurance potential by providing higher levels ofrisk-adjusted yield ofbiomass. We close by discussing how to develop conservation

strategies that actively manage biodiversity portfolios in ways that address performance risk, and suggest a new empirical research program to

enhance progress in this field.
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al. 2002, Baumgärtner 2005) in which biodiversity may pro-
vide natural risk insurance to ecosystem managers and in- 
vestors.We illustrate our point using empirical information 
derived from past research on temperate grassland bio- 
diversity and its influence on the mean and variance ofone 
important ecosystem service: plant biomass production or 
yield.We close by outlining the kind ofresearch program that 
we believe ecologists must undertake to generate the empir- 
ical data necessary to support decisions on investment in the 
ecosystem services associated with biodiversity. 

Biodiversity, variability, and performance risk 
We define biodiversity as the number ofspecies contained in 
a system, although we recognize that the term encompasses 
biological types at many levels oforganization beyond species 
in an ecosystem (e.g., genetic variety within a population of 
a single species).We use the species-level definition largely be- 
cause species tend to be the units ofconservation and because 
most research on ecosystem services has explored the linkage 
between collections ofspecies and their associated function. 
We define expected performance as the mean level of an 
ecosystem function provided by a specific collection ofspecies 
(i.e., level of biodiversity). This is quantified by averaging 
the magnitude ofthe function provided by a given collection 
ofspecies across time or space.Variability in the expected per- 
formance can arise in two ways. First, there may be tempo- 
ral variability due to among-year fluctuations in the 
population abundance ofspecies performing a certain func- 
tion within an ecosystem. Such temporal variability is often 
used as a surrogate measure for ecosystem stability, with the 
degree of variability equated with the degree of instability 
(Doak et al. 1998,Yachi and Loreau 1999,Lehman and Tilman 
2000, Tilman et al. 2005). Second, an ecosystem function 
may be quite variable from location to location within a 
given time period, even ifeach location harbors the same col- 
lection ofspecies. This arises simply because there is natural 
biological variability in the ability ofindividuals ofall species 
to perform given ecosystem functions at a location. 

Variability introduces the risk of poor performance for 
an ecosystem function. We call this underperformance risk. 
Such risk is quantified as the proportion oflocations or time 
periods in which the level ofan ecosystem function falls be-
low the expected value. Because temporal and spatial variability 
lead to underperformance risk in conceptually similar ways, 
the arguments below apply broadly to ecological systems 
with variable performance. 

Some effort has been made to understand the relationship 
between the level ofbiodiversity in a system and associated 
variability in the level ofecosystem functions. Theory predicts 
that higher levels of biodiversity lead to lower variability 
(Yachi and Loreau 1999, Lehman and Tilman 2000, Tilman 
et al. 2005). Systems with many species can buffer the dis- 
turbances better than systems with fewer species, because

the probability is greater that some species will be able to main- 
tain a certain level of
ecosystem service, even though others

may fail to function.
This qualitative property—the decline


in variability in ecosystem function with increasing bio-
diversity—has led researchers to argue that biodiversity offers

considerable insurance to managers that a particular ecosys-
tem function will remain stable or persist (Yachi and Loreau

1999).


The body oftheory supporting the insurance value ofbio-
diversity is based on conceptualizations ofecosystems as col-
lections of competitor species (e.g., Lehman and Tilman

2000). That is, the theory considers only “horizontal” diver-
sity (species diversity within a particular trophic level ofan

ecosystem). Ecological systems contain two dimensions of

species diversity, however: species diversity within trophic

levels (horizontal diversity) and trophic-level diversity within

ecosystems (vertical diversity). Recent research has revealed

that variability in function may not always decline with in-
creasing species diversity when the relationship is examined

across multiple trophic levels (Halpern et al. 2005, Thébault

and Loreau 2006). Thus,whether the insurance value ofbio-
diversity (i.e., reduction of underperformance risk) is re-
tained under conditions in which variability does not decline

with biodiversity depends quantitatively on the way the mag-
nitude of the mean and variance in ecosystem function

change with biodiversity.


Indeed, theoretically, there are many possible relationships

between biodiversity and the mean and variance in ecosystem

function. The mean level can increase, remain unchanged, rise

and decline, or decline with increasing levels ofbiodiversity.

The associated variance can either decrease or increase with

increasing biodiversity.Accordingly,decisions about which lev-
els ofbiodiversity offer the greatest investment opportunity

require quantitative comparisons based on the mean and

the variance ofperformance in time (i.e., volatility). Ifbio-
diversity is considered as a portfolio of species, the analogy

to portfolios offinancial assets becomes evident. Several au-
thors have highlighted this (Tilman et al. 1998, Lehman and

Tilman 2000) and established links to the portfolio theory

originally developed by Markowitz (1959). Figge (2004) has

further suggested that fundamentals ofportfolio theory could

be used to analyze the risk–return characteristics ofportfolios

ofspecies, as is done in financial asset management. Below,

we outline a way to go about doing this.


Portfolio theory and investment in biodiversity

The basic idea ofportfolio theory is that an investor can re-
duce risks purely on statistical grounds by investing in a port-
folio ofassets (stocks and bonds) or asset classes (countries,

sectors, currencies) rather than by gambling on a single

asset. A portfolio of assets has a lower collective variance

when compared with the average ofvariances ofall individ-
ual assets because the variance σ2


P ofportfolio performance

is calculated as the sum of all individual variances plus all

covariances (Elton and Gruber 2003):


(1)
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where X
j 
is the proportion ofasset j in the portfolio, σ
2


j 
the

variance ofasset j, COVjk the covariance ofassets jand k, and

Nthe number ofassets. Ifthe performances ofindividual as-
sets are negatively correlated, covariances become negative and

thus reduce portfolio variance. In essence, assets that are per-
forming well cover for those that are performing poorly. The

mean performance ofthe portfolio µ

p 
is then calculated as the


weighted performance Xjµj ofeach asset j:


(2)


Investment decisionmaking can be accomplished by cal-
culating a risk-adjusted performance index that standardizes

expected return with expected risk (Elton and Gruber 2003).

One such index, the Sharpe index,quantifies risk-adjusted per-
formance in terms ofthe ratio ofexpected (mean) return to

variability, θ:


(3)


where µp is the average performance ofthe portfolio, Rfthe

average risk-free rate ofperformance, and σ


p 
the standard de-

viation ofthe portfolio performance.Higher values ofthis in-
dex are preferable to lower values because they indicate

greater reliability (i.e., lower volatility or variability relative to

expectations) in the performance of the investment. The

Sharpe index indicates that investors should choose to take

higher risks (choose portfolios with higher variances) only if

they are compensated with a higher expected performance

(higher mean performance). This index has considerable

potential for the examination ofrisk in ecosystem services be-
cause it uses variables that are routinely measured in ecological

studies. For example,Lehman and Tilman (2000) and Tilman

and colleagues (2005) used such mean-variance analysis to ex-
amine the effect ofplant species richness on the long-term sta-
bility ofplant biomass production.


Applying this type ofanalysis to portfolios of species re-
quires ascertaining whether or not the service the species

provide covaries because the species independently respond

to external disturbance (e.g., differences in tolerance to

drought stress among grassland species) or interact ecolog-
ically (e.g., negative covariance for competitors or predators

and prey and positive covariance for mutualists). It is note-
worthy that ecological systems differ in one fundamental

way from traditional financial systems: There is the potential

for interaction among the assets (species). This potential for

interactions among species means that we must consider

two types ofportfolios, statistical portfolios (type I) and eco-
logical portfolios (type II). In type I portfolios, species, like

financial assets, do not interact at all, or their interactive ef-
fects can be abstracted, leading to incremental or linear

changes in expected performance.A biological example might

be farm-level crop diversification, in which different mono-
cultures ofcrops are planted in different locations to protect


against risks ofchange in climate or in market prices. In this

case,diversification is analogous to that offinancial assets, and

the performance ofthe portfolio is the average performance

ofeach asset.


Ifspecies interact because ofecological interdepencies (a

type II portfolio), then the direct analogy to financial assets

breaks down. In this case, estimating the expected performance

of the portfolio will require more than a simple under-
standing ofthe relative abundance ofspecies in the portfolio

(i.e., equation 2 may not apply). It will require quantification

ofweightings that consider interactive effects of the partic-
ular combination ofspecies. Furthermore, species interactions

may cause the relationship between species diversity in the

portfolio and the mean performance ofa specific function to

be nonlinear.


Lehman and Tilman (2000) recognized the potential for

ecological interactions to alter risk-adjusted performance

and called this a covariance effect. They distinguish this from

what they call the portfolio effect (i.e., variance in ecosystem

function may be reduced purely on statistical grounds).How-
ever, equation 1 shows that covariance is also central to ex-
plaining portfolio effects.We therefore avoid using the term

“covariance effect” to account for the effects of ecological

interactions. Instead, we prefer to distinguish portfolios of

species as either statistical (type I) or ecological (type II).


Empirical examples of risk-adjusted

performance for selected ecosystems

To illustrate how the risk-adjusted performance ofecosystem

services varies with the level ofbiodiversity, we synthesized

data from two kinds ofstudies conducted in temperate grass-
lands,which are among the best-studied ecosystems (table 1).

The first kind ofstudy systematically manipulated species di-
versity and measured levels ofan important ecosystem ser-
vice, plant biomass production or yield. The second study

surveyed natural levels ofbiodiversity and measured the as-
sociated yield within the sampling location.We analyzed the

risk-adjusted performance for each kind ofstudy separately.


Data sources. We considered the plant species within an

experimental or sampling plot as a portfolio that produced

a certain level ofharvestable standing plant biomass or yield.

To find the relationship among mean performance, variance

in performance, and species diversity,we extracted data from

several recent and prominent experiments reporting on the

link between plant species diversity and associated produc-
tivity (Hooper and Vitousek 1997,Hector et al. 1999,Tilman

et al. 2002). The studies were either conducted separately

within different grassland ecosystems in the United States

(Hooper and Vitousek 1997, Tilman et al. 2002) or con-
ducted simultaneously but replicated in different countries

within continental Europe and the United Kingdom to

facilitate systematic, broadscale comparison (Hector et al.

1999). In general, the experimental studies systematically

manipulated the initial composition and abundance ofdif-
ferent plant species (biodiversity) in 4-m2 experimental field
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plots and measured the level ofdry plant biomass (yield) at

the end of the growing season. In all of the studies, the raw

yield data for each replicate treatment were reported in

graphs. We compiled our data by reading the graphs and

recording all individual plot values ofyield by experimental

level ofplant diversity. We used the compiled data to calcu-
late the mean and standard deviation in yield for each ex-
perimental level ofplant diversity.


We also used data from Hodgson and colleagues (2005),

who investigated the relationship between natural levels of

plant species diversity and yield in a sample of grassland

field plots in the United Kingdom. The raw data for this

study were also reported graphically. In this case,plant diversity

was not set at specific levels but rather varied continuously.

We again recorded all individual plot values ofyield from the

graphs,but did this for each incremental level ofplant diversity

that was sampled. We then compiled the yield values ac-
cording to the associated incremental level ofplant species di-
versity and calculated the mean and standard deviation in yield

for each incremental level ofdiversity.


Calculation of risk-adjusted yield. We calculated the risk-
adjusted yield θ
L* for a given level ofbiodiversity L as


(4)


where n is the number ofplots with species diversity L, µ
i 
is


the biomass yield ofplot iwith diversity level L, µ
pL 

is the mean

biomass yield ofplots i = 1, ..., n at biodiversity level L, and

σ


pL 
is the standard deviation of biomass yield of plots i =


1, ...,N. In ecological systems, there is no such thing as a risk-

free rate ofreturn.We therefore obtained equation 4 by set-

ting R
f 
(equation 3) to zero. We regressed the dependent


variable, risk-adjusted yield (θ
L*), on the independent vari-

able, biodiversity level (L), using SPSS 11.0 for Macintosh.


Our use of equation 4 to calculate risk-adjusted yield is


merely a starting approximation to illustrate our point.More


accurate quantifications ofrisk-adjusted yield require calcu-

lating the portfolio variance according to equation 1. To do


this, the biomass yield must be empirically measured in-

dividually for every species (i.e., asset) ofan ecological port-

folio (type II) represented by plot i. Although such data are


available for a few species within a common plot area, they


are not, to our knowledge, available to analyze covariances


for the range ofplant diversities and species used in the field


experiments.


Regression model for level of biodiversity and risk-adjusted


yield. To analyze the risk-adjusted yield in relation to bio-

diversity levels, we examined data from field plots and ex-

perimental plots separately. We fit these data to several


different statistical models, ranging from linear to exponen-

tial, quadratic, cubic, and logarithmic. From the candidate


models, we selected the four with the highest variance ex-

plained (R2) (table 2). However, the variance explained by a


model can be improved by increasing the number ofparam-

eters used to fit the model. Hence, the estimated usefulness


ofa model must be adjusted to reflect the number ofparam-

eters. We therefore used the Akaike information criterion


(AIC) to identify the model that best explains the data, given


the differences in the number ofmodel parameters (Akaike


1973, 1985).
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Table 1. Sources and types ofdata on number ofplant species and yield for grasslands.


Reference Country N (variable) L Type of plot Type of yield


Naeem et al. 1995 United States ~15 5 Experimental, Ecotron Total plant dry biomass (g per plot)

(controlled climate facility)


Hooper and Vitousek 1997 United States ~2–3 4 Experimental, serpentine Mean aboveground dry biomass

(California) grassland (g per m2)


Tilman et al. 2002 United States 20–24 7 Experimental, prairie grassland Total dry biomass (g per m2)

(Minnesota)


Hector et al. 1999 Germany 10–20 5 Experimental, arable grassland Mean aboveground dry biomass

(g per m2)


Hector et al. 1999 Portugal 4–28 5 Experimental, grazing grassland Mean aboveground dry biomass

(g per m2)


Hector et al. 1999 Switzerland 10–20 5 Experimental, arable grassland Mean aboveground dry biomass

(g per m2)


Hector et al. 1999 Greece 8–14 5 Experimental, fallow grassland Mean aboveground dry biomass

(g per m2)


Hector et al. 1999 Sweden 6–24 5 Experimental, arable grassland Mean aboveground dry biomass

(g per m2)


Hodgson et al. 2005 United Kingdom – 36 Field, arable grassland Economic yield based on estimates

of leaf nitrogen (£ per ha per yr)


£, British pound sterling.


Note: N is the number of replicates per treatment, and L is the number of treatment levels (number of species) from which the risk-adjusted yield was


calculated.
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To assess the incremental rate ofperformance on invest-
ment in biodiversity,we calculated the marginal rate ofrisk-
adjusted yield as a function ofdiversity by taking the derivative

ofthe functions describing risk-adjusted yield (θ*) in relation

to biodiversity level (S, number ofplant species): δθ*/δln S.


Empirical relationships between biodiversity and risk-adjusted


yield for grassland ecosystems. In general, we found a

tendency for risk-adjusted yield to vary concavely with bio-
diversity level. The field sample data revealed a much clearer

functional relationship between biodiversity and risk-adjusted

yield than did data from field experiments (figure 1). Using

the AIC values to compare models, it appears that the expo-
nential model gives the best fit in relation to the number of

parameters in the model (i.e., lowest AIC scores) (table 2).

However, an analysis ofR2 change ofthe nested models (lin-
ear, quadratic, cubic) reveals that the inclusion ofmore vari-
ables results in an increase ofthe R2 with a significant change

ofthe F value (table 3). Regardless, the emerging insight is that

risk-adjusted yield changes nonlinearly rather than linearly

with plant species diversity.


Another useful measure for decisionmaking is the incre-
mental change in performance, or the marginal rate ofrisk-
adjusted yield. In the context ofour analysis, this quantifies

the relative improvement in risk-adjusted yield offered by a

higher level ofdiversity. The measure is obtained by taking

the derivatives ofthe regression models, presented in figure

2.Here positive values indicate an incremental increase in risk-
adjusted yield with diversity, zero values indicate no incre-
mental change in risk-adjusted yield, and negative values 
indicate an incremental decrease in risk-adjusted yield. For 
the two best-fit models (exponential and quadratic), it appears 
that the marginal benefit of biodiversity does not consis- 
tently increase over the entire domain ofavailable plant di- 
versity. Rather, it first declines (becomes more negative) 
before it rises (becomes more positive) (figure 2). The im-
plication here is that monocultures (the lowest diversity) can 
offer the same marginal benefit as moderate levels of bio- 

diversity.Moreover, levels ofbiodiversity between the lowest

and moderate values will be a less preferable investment
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Table 2. Regression models with risk-adjusted yield (θ*) depending on the number ofplant

species, S (ln S), for field plots and experimental plots.


Model R2 df

0


b

1


b

2


b

3


AIC


Field plots


Linear 0.28 34 13.35 0.001 0.03 0.62 – – 3.59

Exponential 0.26 34 11.78 0.002 0.55 0.33 – – 2.47

Quadratic 0.53 33 18.35 0.000 1.57 –1.42 0.50 – 3.22

Cubic 0.60 32 15.62 0.000 1.15 0.81 –1.04 0.27 3.12


Experimental plots


Linear 0.14 39 6.25 0.017 1.67 0.45 – – 4.12

Exponential 0.20 39 9.22 0.004 1.59 0.19 – – 1.95

Quadratic 0.21 38 5.18 0.010 2.09 –0.55 0.33 – 4.07

Cubic 0.24 37 3.87 0.004 1.93 0.58 –0.64 0.20 4.10


AIC, Akaike information criterion; df, degrees offreedom.


Note: Linear model: θ* = b 
0 
+ b

1
ln S. Exponential model: θ* = b

0
eb 1 • ln S
. Quadratic model: θ* = b

0 
+ b

1
ln S + b

2 
•


(ln S)2. Cubic model: θ* = b
0 
+ b

1
ln S + b

2 
• (ln S)2 + b

3
(ln S)3.


Figure 1. Dependency ofrisk-adjusted yield (θ*) and number of

plant species, S (ln S), in grassland. Linear, exponential, qua-
dratic, and cubic models were fitted to the data for (a) economic

yield, based on leafnitrogen measured for field plots (36 data

points), and (b) biomass yield, measured for experimental plots

(41 data points).
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choice because they have very low prospects for risk mitiga- 
tion.Whether this pattern holds for many other biodiversity 
portfolios remains uncertain and will depend quantitatively 
on the way the mean and variance in performance change with 
biodiversity levels. The point to underscore here is that ana- 
lyzing the marginal rate of risk-adjusted yield can lead to 
conclusions about the investment opportunity in biodiversity 
that are altogether different from those obtained by simply 
analyzing the way mean performance changes with bio- 
diversity, as is currently done in most ecological studies. 

Portfolio management for biodiversity

The results presented above show that an increased level of

biodiversity can improve the yield-to-variance ratio and in-
crease the marginal benefit ofadding biodiversity to a port-
folio. Therefore, grassland portfolios consisting ofplots with

higher plant species diversity can provide risk mitigation

with respect to biomass production. There is one caveat,

however: We did not investigate whether mixed (i.e., struc-
tured) portfolios ofplots with high and low diversity levels

may offer even better mitigation. Nonetheless, we now have

an analytical framework to gauge which kinds ofbiodiversity

portfolios (combinations ofbiodiversity plots) can optimize

the expected performance-to-variance ratio. Thus, invest-
ment risk mitigation may be considered another environ-
mental service of biodiversity. This contradicts certain

contemporary viewpoints that there is a necessary trade-off

between biodiversity and agricultural production (van Wenum

et al. 2004).


By analogy to financial portfolio management, the task in

ecosystem management is to optimize the yield–risk–cost

structure. Yield, in our sense, refers not only to direct finan-
cial performance but also to any type ofservice provided by

ecosystems (e.g., biomass production in agriculture and

forestry, carbon dioxide sequestration, flood mitigation).

Risk refers to the unpredictability offuture yield and is de-
termined by the variance in space and time (Brachinger and

Weber 1997). For example, this variance in forestry and agri-
cultural production can be caused by uncertainty due to nat-
ural causes (e.g., frost, hail, pests, and diseases), market

conditions (e.g., demand or price changes), technical rea-
sons (e.g., resistance ofpests to pesticides), and management

abilities to respond to such exogenous impacts (Mouron and

Scholz 2005). Finally, the costs ofmanaging a portfolio should

be taken into account in investment decisions, as they reduce

the absolute financial performance. The crucial question,

however, is what should be the relative weighting of each

asset (class) in the biodiversity portfolio to optimize the out-
come with respect to yield, risk, and cost. Such information

is currently lacking in the ecological literature.
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Figure 2. Marginal rate ofrisk-adjusted yield (θ*) as a function

ofnumber ofspecies, S (ln S), calculated by taking the derivative

(ln S' = δθ*/ δ ln S) for field plots (solid line) and δθ/δ experi-
mental plots (dashed line). (a) Linear model for field plots

(ln S' = 0.62) and experimental plots (ln S' = 0.45); (b) exponen-
tial model: field plots (ln S' = 0.19e0.33ln S), experimental plots

(ln S' = 0.30e00.19ln S); (c) quadratic model: field plots (ln S' =

–1.42 + 0.99ln S), experimental plots (ln S' = –0.55 + 0.65ln S);

(d) cubic model: field plots (ln S' = 0.81 – 2.09ln S + 0.81ln S2),

experimental plots (ln S' = 0.58 – 1.27ln S + 0.59ln S2).


Table 3. Test ofR2 change between linear, quadratic, and cubic models.


Change statistics

Adjusted R2 SE of the R2 F Significant


Model
 2 estimate estimate change change df1 df2 F change


Field plots


Linear 0.53 0.28 0.26 0.97 0.28 13.34 1 34 0.001

Quadratic 0.73 0.53 0.50 0.80 0.25 17.05 1 33 0.000

Cubic 0.77 0.60 0.56 0.75 0.07 5.34 1 32 0.027


Experimental plots


Linear 0.37 0.14 0.12 1.20 0.14 6.25 1 39 0.017

Quadratic 0.46 0.21 0.17 1.16 0.08 3.69 1 38 0.062

Cubic 0.49 0.24 0.18 1.15 0.02 1.19 1 37 0.283


df, degrees offreedom; SE, standard error.


Note: Independent variables in the linear model are constant and lognormal (ln) S; in the quadratic model, constant, ln S, and (ln S)2; and in the cubic


model, constant, ln S, (ln S)2, and (ln S)3.
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Trade-off between risk-adjusted yield and biodiversity for


grassland?Another important question is whether increased

biodiversity results in increased risk-adjusted performance in

all cases. We explore this issue by examining in more detail

the values ofrisk-adjusted performance estimated from the

field data (Hodgson et al. 2005). Recall that these data sug-
gest that for very low levels of biodiversity, the mean risk-
adjusted performance (yield) first decreases with increasing

species diversity (left ofthe minimum in figure 1a), in which

case the marginal risk-adjusted yield is negative (figure 2).


Although not strongly visible in the data sets analyzed, this

trade-off could presumably be observed for agricultural

meadows on fertilized soils with a simplified structure (a

few “crop species”) that is imposed exogenously with high

levels of physical changes, fertilizer input, and irrigation.

However, ifthe goal is not only biomass production but also

protection ofbiodiversity, then a host ofefficient solutions

appears to the right ofthe minimum shown in figure 1. That

is, for each portfolio on the left side (inefficient solutions with

respect to biodiversity conservation), there is a portfolio on

the right side with the same performance but with a higher

level of biodiversity. If there is unrestricted opportunity to

invest in grassland types that lead to higher diversity (on the

right side of the minimum), there is no reason for an eco-
system manager to choose a portfolio from the left side ofthe

minimum.


This is predicated,however,on the assumption that the cost

ofmanaging for a particular biodiversity level and the financial

performances ofbiodiversity are equal for investment options

on either side of the minimum. For example, if the cost of

managing for high levels ofbiodiversity greatly exceeds that

for low biodiversity, then investing in high-biodiversity port-
folios may not be the most efficient choice. This underscores

that simply placing an economic value on the mean level of

production or service provided by biodiversity (e.g.,Costanza

et al. 1997) may not be compelling enough to motivate in-
vestment in biodiversity conservation, because such an effort

does not adequately value the way investors’ choices are mo-
tivated (Figge 2004).


Limitations of mean-variance analysis for ecosystem man-

agement. We used a mean-variance analysis, which treats

upside and downside risks symmetrically and assumes that

risk can be assessed simply by the variance in performance in

relation to expectations. This does not account for the risk tol-
erance ofthe decisionmaker. Risk-averse decisionmakers give

more weight to downside risks than to upside risks, especially

ifthe decision outcome is irreversible. The possibility that in-
vestment decisions for biodiversity are irreversible is what sets

investment decisions for biodiversity conservation apart from

investment decisions for stocks on securities markets. Secu-
rities investments are normally reversible. A security that is

excluded from a portfolio can easily be included again later,

provided the company offering the stock remains in business

(Figge 2004).On large spatial scales—for example,on national

levels—the divestments in biodiversity can lead to definitive


exclusion (i.e., extinction) ofa species from a country’s port-
folio (Swanson 1992), thereby eliminating future options to

add the species to a portfolio.


Ifpredictions ofrisk are based on a distribution that is not

empirically well characterized, one encounters the problem

that extreme events occur more frequently than would be pre-
dicted from the model. From an investor’s point of view,

such rare events represent an unpredictable risk, or dread risk

(Gigerenzer 2004). Because such rare events can occur in

environmental systems,measures need to be developed in ad-
dition to the standard deviation to quantify the dread risks.

To account for differences between upside and downside

risks, specific measures were developed in the investment

sector, based on probability-weighted functions of devia-
tions below some threshold value (Roy 1950, Fishburn 1977,

Harlow and Rao 1989). Grootveld and Hallerbach (1999),

however, stress the computational difficulties ofcalculating

downside portfolio risks and conclude that differences among

downside risk measures are large compared with differences

between mean–variance and downside risk measures.


The calculation ofefficient frontiers,minimum-risk fron-
tiers, and sophisticated downside risk measures ofbiodiver-
sity portfolios would be a fascinating field for future research.

The need for large and consistent data sets with which to cal-
culate accurately the mean and variance in the level of an

ecosystem service currently limits such developments. This

limitation brings us to a final question,namely,what can ecol-
ogists do to enhance the utility ofscientific data in increas-
ing interest in investment opportunities for biodiversity

conservation?


Data needs and contributions of ecological research

The insights we present here have significant implications for

ecological field research. Ecologists examining relationships

between biodiversity and ecosystem function routinely con-
duct experiments using analysis ofvariance (ANOVA). This

experimental approach often has two limitations. First, in-
vestigators tend to homogenize background variation among

plot sites in order to maximize the likelihood ofdetecting a

treatment (biodiversity) effect, should one occur.As such, in-
vestigators may not examine the full range ofenvironmen-
tal conditions in which different combinations of species

coexist, and so may end up suppressing the magnitude ofvari-
ation in response (level ofecosystem function) that might oc-
cur under natural conditions. This claim is borne out by the

fact that the field survey data led to better quantitative reso-
lution ofthe pattern in the risk-adjusted yield in relation to

plant species diversity than did the experimental data (figure

2). In essence, ANOVA-style field experiments risk under-
estimating the magnitude ofvariation in function,which in

turn leads to an underestimate ofperformance risk. Second,

many experiments are designed to test for an effect rather than

to quantify a function and its variance. For example, exper-
iments often are designed only to compare single-species

treatments (low diversity) against multiple-species treat-
ments (high diversity), and do not consider intermediate
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pairwise, three-way, and other species combinations. Such de-
signs are insufficient to quantify the covariance term (equa-
tion 1) needed for accurate quantitative estimates ofvariance.


To improve the contribution ofecological science to this

area ofconservation, there is a critical need for detailed in-
formation on mean and variance in the level of a function

across a continuous range of species diversity. Moreover,

measurements should be made across a range ofbiophysical

conditions in which a particular collection ofspecies that con-
tribute to a desired function coexist. To this end, we recom-
mend that ecologists adopt regression or related response

surface designs (Inouye 2001) that quantify the functional re-
lationship between biodiversity and corresponding ecosystem

function across a broad range ofspecies diversity. This will al-
low researchers to estimate the covariance and, ultimately,

portfolio variance around each mean value accurately (risk

quantification); to determine whether the variance is skewed

or symmetrical (relative importance ofupside or downside

risk); and to estimate the ecological interdependence of

species (ecological or type II portfolio). Such designs have the

added advantage that they manipulate both species diversity

and individual species density, thereby allowing investigators

to quantify how different weightings of species (based on

relative species abundance) influence risk. The insights pre-
sented above deal with short-term performance in small

grassland plots. The concepts we present apply to longer-
term time horizons (multiyear to decades), timescales on

which most economic decisions are made. However, sys-
tematic experimental data on biodiversity and ecosystem

performance rarely extend beyond two or three years. Con-
sequently, there is a critical need for ecologists to examine per-
formance over longer time periods so that the characteristics

of temporal volatility and economically relevant risks can

be quantified.


Such an empirical program also requires the development

ofrigorous theoretical frameworks to guide thinking about

the economic and financial implications ofthe relationship

between biodiversity and ecological functions generally (e.g.,

Lehman and Tilman 2000, Tilman et al. 2005, Thébault and

Loreau 2006). Such theory can hint at where important non-
linearities in field systems might arise.Moreover, it can guide

the selection offunctions to fit empirical diversity–function

relationships measured using response surface designs (Inouye

2001) in order to foster research that leads to generalizable

insights.


Conclusions

Biodiversity represents a portfolio of genes, species, and

ecosystems that may contribute to vital services that sup-
port human livelihoods and well-being.We have provided a

general framework for understanding how biodiversity offers

considerable investment potential by treating biodiversity as

analagous to diversity in investment portfolios. Making

this idea operational requires quantification of under-
performance risk. We have shown empirically for grassland

ecosystems how investment in portfolios with different


levels of biodiversity alters mean performance and under-
performance risk. The conceptual framework and the ex-
amples show how protecting biodiversity may require a

deeper empirical understanding ofnot only the mean level

of an ecosystem service but also its variability in time and

space, thus calling for a new kind ofecological research pro-
gram.
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